Читать «Электричество и магнетизм» онлайн - страница 24

Ричард Фейнман

раз в начале нашего курса многие простые задачи будут решаться именно этими тремя интегральными формулами.

Фиг. 3.1. Иллюстрация уравнения (3.1).

Вектор Сш вычисляется на линейном элементе ds.

Позже, однако, когда задачи станут потруднее, этими простыми методами мы больше обойтись не сможем.

Мы начнем с той интегральной формулы, куда входит градиент. Мысль, которая содержится в ней, очень проста: раз градиент есть быстрота изменения величины поля, то интеграл от этой быстроты даст нам общее изменение поля. Пусть у нас есть скалярное поле ш(x, у, z). В двух произвольных точках (1) и (2) функция я|з имеет соответственно значения ш(l) и ш(2). [Используется такое удобное обозначение: (2) означает точку (x2, y2, z2), а ш(2) это то же самое, что ш(x2, y2, z2).] Если Г (гамма) — произвольная кривая, соединяющая (1) и (2) (фиг. 3.1), то справедлива

Т Е О Р Е М А 1

(3.1)

Интеграл, стоящий здесь, это криволинейный интеграл от (1) до (2) вдоль кривой Г от скалярного произведения вектора Сш) на другой вектор, ds, являющийся бесконечно малым элементом дуги кривой Г [направленной от (1) к (2)].

Напомним, что мы понимаем под криволинейным интегралом. Рассмотрим скалярную функцию f(x, y, z) и кривую Г, соединяющую две точки (1) и (2). Отметим на кривой множество точек и соединим их хордами, как на фиг. 3.2. Длина i-й хорды равна Dsi,-, где i пробегает значения 1, 2, 3, .... Под криволинейным интегралом

подразумевается предел суммы

где fi — значение функции где-то на i-й хорде. Предел — это то,

Фиг. 3.2. Криволинейный интеграл есть предел суммы.

В нашей теореме (3.1) интеграл означает то же самое, хоть и выглядит чуть по-иному. Вместо f стоит другой скаляр — составляющая Сш в направлении Ds. Если обозначить эту составляющую через (Сш)t , то ясно, что

(3.2)

Интеграл в (3.1) и подразумевает сумму таких членов.

А теперь посмотрим, почему уравнение (3.1) правильно. В гл. 1 мы показали, что составляющая Сш вдоль малого смещения DR равна быстроте изменения ш в направлении DR. Рассмотрим хорду кривой Ds от точки (1) до точки а на фиг. 3.2. По нашему определению

(3.3)

Точно так же мы имеем

(3.4)

где, конечно, (Сш)1 означает градиент, вычисленный на хорде Ds1, a (Сш)2 — градиент, вычисленный на Ds2. Сложив (3.3) и (3.4), получим

(3.5)

Вы видите, что, продолжая прибавлять такие члены, мы получаем в итоге