Читать «Электричество и магнетизм» онлайн - страница 25

Ричард Фейнман

(3.5)

Вы видите, что, продолжая прибавлять такие члены, мы получаем в итоге

(3.6)

Левая часть не зависит от того, как выбирать интервалы — лишь бы точки (1) и (2) были теми же самыми, так что справа можно перейти к пределу. Так доказывается уравнение (3.1). Из нашего доказательства видно, что, подобно тому как равенство не зависит и от выбора точек а, b, с,..., точно так же оно не зависит от выбора самой кривой Г. Теорема верна для любой кривой, соединяющей точки (1) и (2).

Два слова об обозначениях. Не будет путаницы, если писать для удобства

(3.7)

Тогда наша теорема примет такой вид:

Т Е О Р Е М А 1

(3.8)

§ 2. Поток векторного поля

Прежде чем рассматривать следующую интегральную теорему — теорему о дивергенции,— хотелось бы разобраться в одной идее, смысл которой в случае теплового потока легко усваивается. Мы уже определили вектор h, представляющий количество тепла, протекающего сквозь единицу площади в единицу времени. Положим, что внутри тела имеется замкнутая поверхность S, ограничивающая объем V (фиг. 3.3). Нам хочется узнать, сколько тепла вытекает из этого объема. Мы это можем, конечно, определить, рассчитав общий тепловой поток через поверхность S.

Обозначим через da площадь элемента поверхности. Этот символ заменяет двумерный дифференциал. Если, например, элемент окажется в плоскости ху, то

da = dxdy.

Позже мы будем иметь дело с интегралами по объему, и тогда будет удобно рассматривать элемент объема в виде малого кубика и обозначать его dV, подразумевая, что

dV= dxdydz.

Кое-кто пишет и d2a вместо da, чтобы напомнить самому себе, что это выражение второй степени; вместо dV пишут также d3V. Мы будем пользоваться более простыми обозначениями, а вы уж постарайтесь не забывать, что у площадей бывают два измерения, у объемов — три.

Фиг. 3.3. Замкнутая поверхность S, ограничивающая объем V.

Единичный вектор nвнешняя нормаль к элементу поверхности da, a hвектор теплового потопа сквозь элемент поверхности.

Поток тепла через элемент поверхности da равен произведению площади на составляющую h, перпендикулярную к da. Мы уже определяли n — единичный вектор, направленный наружу перпендикулярно к поверхности (см. фиг. 3.3). Искомая составляющая h равна

hn=h·n, (3.9)

и тогда поток тепла сквозь da равен

h·nda. (3.10)

А весь поток тепла через произвольную поверхность получается суммированием вкладов от всех элементов поверхности. Иными словами, (3.10) интегрируется по всей поверхности

(3.11)

Этот интеграл мы будем называть «поток h через поверхность». Мы рассматриваем h как «плотность потока» тепла, а поверхностный интеграл от h — это общий поток тепла наружу через поверхность, т. е. тепловая энергия за единицу времени (джоули в секунду).

Мы хотим эту идею обобщить на случай, когда вектор не представляет собой потока какой-то величины, а, скажем, является электрическим полем. Конечно, если это будет нужно, то и в этом случае все равно можно проинтегрировать нормальную составляющую электрического поля по площади. Хотя теперь она уже не будет ничьим потоком, мы все еще будем употреблять слово