Читать «Электричество и магнетизм» онлайн - страница 23
Ричард Фейнман
(2.60)
Ио это выражение
Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан С2 есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРОВ
§1.Векторные интегралы; криволинейный интеграл от ▽ш
§2.Поток векторного поля
§З. Поток из куба; теорема Гаусса
§4.Теплопроводность; уравнение диффузии
§5.Циркуляция векторного поля
§6. Циркуляция по квадрату; теорема Стокса
§7. Поля без роторов и поля без дивергенций
§8.Итоги
§ 1. Векторные интегралы;
криволинейный интеграл от Сш
В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено довольно много, все их можно подытожить одним правилом: операторы
Мы уже говорили о смысле операции градиента (С на скаляр). Обратимся теперь к смыслу операций вычисления дивергенции (расходимости) и ротора (вихря). Толкование этих величин лучше всего сделать на языке векторных интегралов и уравнений, связывающих эти интегралы. Но уравнения эти, к несчастью, нельзя вывести из векторной алгебры при помощи каких-либо легких подстановок, так что вам придется учить их как что-то новое. Одна из этих интегральных формул практически тривиальна, а другие две — нет. Мы выведем их и поясним их смысл. Эти формулы фактически являются математическими теоремами. Они полезны не только для толкования смысла и содержания понятий дивергенции и ротора, но и при разработке общих физических теорий. Для теории полей эти математические теоремы — все равно, что теорема о сохранении энергии для механики частиц. Подобные теоремы общего характера очень важны для более глубокого понимания физики. Но вы увидите, что, за немногими простыми исключениями, они мало что дают для решения задач. К счастью, как