Читать «Числа: от арифметики до высшей математики» онлайн - страница 23
Айзек Азимов
Части единицы
То, что обычный человек сделал с обычными единицами измерения, смогут сделать математики со своими абстрактными числами.
Почему бы не разделить единицу на две равные части, на три, на четыре и так далее? Для того чтобы такое деление не было бесполезным, надо присвоить этим частям единицы собственные названия. Затем надо найти удобный символ для этих частей единицы. И наконец, надо разработать систему, которая позволит оперировать с этими частями и производить обычные арифметические операции.
Далее, если с долями чисел можно манипулировать так же, как с обычными числами, это означает, что части чисел можно рассматривать как обычные числа как в практической, так и в теоретической сфере применения.
Названия для частей чисел пришли из обыденной речи. Две равные части называют половинами. Части, которые получаются при делении числа на какое-то количество долей, называются в соответствии с количеством этих долей, то есть третьи, четвертые, пятые и так далее.
Половина — это то, что получается при делении единицы на 2 части. Другими словами, это 1 : 2. При таком делении мы не получим обычного целого числа, и бессмысленно его искать. Нужно просто выбрать обозначение для данной арифметической операции. Таким обозначением стало у ½. Его можно прочесть как одна вторая, или половина. Если мы делим 1 на 3, то получаем соответственно одну третью часть, или одну треть. Если делим на 5, то получаем одну пятую, и так далее. Мы не пытаемся решить эти примеры, 1/2, 1/3, 1/5 — это просто обозначения.
Когда мы говорим, что 1 : 3 = 1/3, мы просто утверждаем, что «единица, деленная на 3, равна единице, деленной на 3».
Это звучит обескураживающе. Вы можете спросить: а что такое эта единица, которую мы делим на 3? Ответ совсем прост: а какая разница, что это. Если мы можем манипулировать с величиной 1/3 как с обычным числом, то этого вполне достаточно.
Эти доли единицы назвали дробями (от слова «дробить»). В отличие от дробей те числа, с которыми мы имели дело раньше, называются целыми.
Теперь рассмотрим, какие действия можно осуществлять с дробями. Надо выяснить, как складывать и вычитать дроби. Предположим, нам надо сложить 1/3 и 1/3. На словах это очень легко объяснить. Одна треть и одна треть вместе дадут две трети (так же как одно яблоко плюс одно яблоко равно двум яблокам).
Затем надо решить, как записать это действие при помощи арифметических символов. Поскольку одна треть — это 1/3, логично предположить, что две трети — это 2/3. Но что означает эта величина? Как мы разделим 2 на 3? Предположим, у нас два куска пирога, а детей — трое. Тогда каждый кусок пирога делим на 3, получаем 6 маленьких кусочков. Теперь каждому ребенку можно дать по два кусочка. Таким образом, каждый ребенок получает по 2/3.
Рассуждая таким образом, мы можем показать, что результат любого деления может быть представлен в виде дроби. Сорок три пирога, разделенные между семидесятью тремя людьми, дадут результат 43/73, то есть каждый человек получит по 43/73 части пирога.