Читать «Числа: от арифметики до высшей математики» онлайн - страница 21
Айзек Азимов
Пересчет и измерение — это разные процессы. При пересчете вы имеете дело с отдельными, или дискретными объектами. Те числа, которые мы с вами изучали в начале книжки, также являются отдельными, или дискретными, и они хорошо соответствуют дискретным объектам. При рассмотрении дискретных объектов нам и не нужны никакие другие числа.
Если же нам приходится измерять что- либо, что не состоит из отдельных объектов, задача сразу же усложняется. Теперь мы имеем дело с протяженностью, или с континуумом, то есть с продолжительностью времени какого-то процесса или длиной какой-нибудь линии.
Обычные дискретные числа не соответствуют протяженным величинам, и их нельзя использовать для измерения таких величин, не рискуя допустить неточность.
Для того чтобы избежать такого несоответствия, следует вставить в ряд дискретных чисел какие-то промежуточные числа. Когда мы это сделаем, числа 1, 2, 3, 4… становятся только малой частью бесконечной системы, которая соответствует таким понятиям, как время, длина, или любому другому континууму.
Со следующей главы мы начнем изучать такие числа, выясним их происхождение и освоим правила расчетов при помощи таких чисел.
Глава 4
РАЗБИТЫЕ ЧИСЛА
Делим единицы
Человечество не могло согласиться с ограничениями в делении. Предположим, надо разделить два яблока между четырьмя детьми. Совершенно бесполезно объяснять им, что такое деление невозможно, поскольку нет такого числа, которое после умножения на 4 даст 2. И ни одна мать так не сделает. Она попросту разрежет каждое из яблок пополам и даст каждому из детей половину (или приготовит из этих яблок пюре).
Следуя этой системе, человечество уже давно научилось разбивать основные единицы измерения на более мелкие и присваивать этим новым единицам собственные названия. Например, в американской системе измерения объема существует единица, называемая кварта, если кварту разделить пополам, получим две новые единицы, пинты. Если у вас есть две кварты пива, на которое претендуют четыре человека, то каждый получит по одной пинте.
Можно делить единицы и на числа, большие 2. Например, бушель (еще одна американская мера объема) можно разделить на 4 пека, а пек — на 8 кварт. Один фунт можно разделить на 16 унций, а 1 кварту на 32 жидкие унции. Все эти числа являются результатом деления какой-то величины на две части, затем каждую из этих частей снова делили пополам и так далее.
Можно, например, разделить 1 кварту между двумя людьми, если каждому дать по 16 жидких унций (а это как раз 1 пинта). А если надо разделить одну кварту между четырьмя людьми, то каждому можно дать по 8 жидких унций (то есть по полпинты). Если же у нас 8 человек, то каждому достанется по 4 жидкие унции (или по 1 джиллу).
Все это замечательно, но что делать, если надо разделить что-то между тремя? Мы не можем разделить кварту, в которую входят 32 унции, на три, поскольку 32 не делится на 3. Кварту удобно делить между 16 или 32.
Следовательно, было бы полезно выбрать какую-нибудь единицу, которая содержала бы максимальное количество сомножителей. Одним из таких чисел является 12. В одном футе 12 дюймов, 12 тройских унций содержится в тройском фунте, а 12 — это, как известно, дюжина.