Читать «Число, пришедшее с холода. Когда математика становится приключением» онлайн - страница 125

Рудольф Ташнер

Если рассмотреть последовательность Гудстейна с начальным числом a1 и если в этой последовательности после члена с номером n все остальные обращаются в ноль, (так что справедливо an = 1 и an + 1 = 0)то мы обозначим этот номер n выражением n = Θ (a1). При таких обозначениях имеем: Θ(1) = 1, Θ(2) = 3, Θ(3) = 5 и Θ(4) = 3 × 2402 653 211.

Последовательность Гудстейна с головокружительной скоростью растет, например, при a= 19. (Число 19 хорошо подходит для понимания сути процесса, так как следующие два члена последовательности можно записать в виде степенной башни.) Второй член последовательности вычисляется исходя из:

a2(19) = 222 + 2 + 1

и, таким образом,

3Ω2(19) = 333+ 3 + 1, a2 = 333+ 3

Это уже весьма большое число, а именно a2 = 7 625 597 484 990. Третий член последовательности, a3, вычисляют так:

4Ω3 (333+ 3) = 444+ 4, a3 = 444+ 3.

Этот член последовательности является числом, которое начинается с 13… и имеет 155 разрядов. Четвертый член последовательности является результатом следующих вычислений:

5Ω4 (444 + 3) = 555 + 3, a4 = 555+ 2.

Это число начинается с 18… и имеет 2185 разрядов. Пятый член последовательности получают так:

6Ω5 (555+ 2) = 666+ 2, a= 666+ 1.

Это число начинается с 26… и имеет 36 306 разрядов. И наконец, следующие вычисления дают шестой член последовательности согласно уравнениям:

7Ω6 (666+ 1) = 777+ 1, a6 = 777.

Это число начинается с 38… и имеет 659 974 разряда. Последовательность Гудстейна, начинающаяся с a1 = 19, приводит просто к немыслимо большим, неизмеримым числам.

Однако сам Гудстейн утверждает, что и эта последовательность рано или поздно закончится нулем. Это совершенно необъяснимо, но и сам Гудстейн не имеет ни малейшего представления о том, как долго придется ждать этих нулей. Он просто утверждает, что когда-нибудь это все же произойдет. Ясно одно — надо пройти гигантское число членов последовательности, число, превосходящее всякое воображение и всякие возможности его представления, чтобы когда-нибудь, при n = Θ(19), обнаружить, что an + 1 = 0. Более того, Гудстейн утверждает, что созданная им последовательность чисел

a 1a 2 3Ω2 (a 1) — 1, a 3 =4Ω3 (a 2) — 1, a 4 =5Ω4 (a 3) — 1, a 5 =6Ω5 (a 4) — 1….

всегда должна заканчиваться нулем, независимо от того, с какого числа a1 начата эта последовательность. Это ошеломляющее, поистине невероятное высказывание. Мы не можем утверждать это даже для числа a1 = 19. Но закономерность справедлива, говорит нам Гудстейн, даже для такого чудовищно большого числа, как a1 = 3↑↑↑3. И это вопреки тому факту, что нам никогда не удастся назвать число 2(3↑↑↑3), а уж следующий член последовательности a2 = 3Ω2(3↑↑↑3) — 1 сокрыт и в вовсе непроглядном мраке.

В какой-то момент, уверен Гудстейн, когда основания для каждого последующего члена увеличивают на единицу, мы получим гигантские значения членов последовательности. Для того чтобы обосновать это, Гудстейн, однако, должен дать точное математическое определение бесконечному, к которому стремятся лопающиеся от своей величины члены последовательности Гудстейна. Мы подробнее поговорим об этом в последней главе. Соответствует ли эта математическая модель существу самого понятия бесконечного — вопрос открытый, и, вероятно, он всегда останется открытым.