Читать «Число, пришедшее с холода. Когда математика становится приключением» онлайн - страница 124

Рудольф Ташнер

Оказывается, что раздувание числа имеет место только в том случае, если основание b не превышает число a, подлежащее раздуванию. Так, например, представление 42 по основанию 43 есть не что иное, как само число 42, и замена 43 на 44 дает тот же результат. То есть 44Ω43(42) = 42. Естественно, 100Ω99(42) = 42, и вообще для каждого основания b, большего 42, будет справедливо равенство b+1Ωb(42) = 42. Если, однако, основание b намного меньше числа a, то величина b+1Ωb(a) буквально взрывается.

Теперь мы подошли к главному, к тому, ради чего Гудстейн изобрел понятие раздувания числа. Гудстейн исходил из некоторого числа a1. Сначала он представляет число a1 по основанию 2, то есть образует 2(a1), а затем раздувает это число от основания 2 к основанию 3, то есть вычисляет 3Ω2(a1). Из полученного таким способом числа он вычитает единицу и называет результат a2. То есть a2 = 3Ω2(a1) — 1. Это число Гудстейн представляет по основанию 3 и раздувает его от основания 3 к основанию 4, то есть вычисляет 4Ω3(a2). Следующее число a3 этой последовательности он получает, вычитая из этого результата единицу, то есть a3 = 4Ω3(a2) — 1. Теперь Гудстейн представляет число a3по основанию 4, раздувает его от основания 4 к основанию 5, то есть образует число 5Ω4(a3) и для того, чтобы получить число a4, вычитает из результата единицу: a4 = 5Ω4(a3) — 1. Дальше он продолжает в том же духе. Вот члены этой последовательности:

a1a2 = 3Ω2(a1) — 1, a34Ω3(a2) — 1, a5Ω4(a3) — 1, a5 = 6Ω5(a4) — 1….,

или, в общем виде, an = n + 1Ωn(an — 1) — 1.

Рассмотрим для примера последовательность Гудстейна при a1 = 3: имеем 2(3) = 1 × 2 + 1, и значит, 3Ω2(3) = 1 × 3 + 1 = 4, следовательно, a3Ω2(3) — 1 = 4 — 1 = 3. Теперь 3(3) = 1 × 3 и 4Ω3(3) = 1 × 4 = 4, а a3 = 4Ω3(3) — 1 = 4 — 1 = 3. Так как следующее число 4(3) = 3, то здесь раздувание ничего не меняет: 5Ω4(3) = 3, откуда a= 3 — 1 = 2. 6Ω5(2) равно 2, и значит, a5 = 2 — 1 = 1, а 7Ω6(1) = 1 и a6 = 1 — 1 = 0. С этого места все члены последовательности Гудстейна равны нулю.

Если начать последовательность с числа a1 = 4, то все происходит более энергично: действительно, 2(4) = 1 × 2², то есть 3Ω2(4) = 1 × 3³ = 27, следовательно, a2 = 3Ω2(4) — 1 = 27 — 1 = 26. Далее, 3(26) = 2 × 3² + 2 × 3 + 2, а значит, 4Ω3(26) = 2 × 4² + 2 × 4 + + 2 = 42, и, следовательно, a3 = 4Ω3(26) — 1 = 42 — 1 = 41. Следующие члены последовательности выглядят так: a4 = 60, a5 = 83, a6 = 109, a7 = 139. Очевидно, что члены последовательности растут. Действительно, придется долго ждать, прежде чем этот рост прекратится. После этого величина членов последовательности долгое время остается постоянной, а затем, по мере увеличения основания по сравнению с величиной членов последовательности, начнет постепенно уменьшаться. Лишь после члена последовательности с номером 3 × 2402 653 211 (это число с более чем 121 миллионом разрядов) все следующие члены обращаются в ноль.