Читать «Излучение. Волны. Кванты» онлайн - страница 50
Ричард Фейнман
§ 7. Поле системы осцилляторов, расположенных на плоскости
Предположим, что имеется некоторая плоскость, которую заполняют осцилляторы, причем все они колеблются в плоскости одновременно, с одной амплитудой и фазой. Чему равно поле на конечном, но достаточно большом расстоянии от плоскости? (Мы не можем выбрать точку наблюдения очень близко от плоскости, потому что у нас нет точных формул для поля вблизи источников.) Пусть плоскость зарядов совпадает с плоскостью XY и нас интересует поле в точке Р, лежащей на оси z, достаточно далеко от плоскости (фиг. 30.10). Предположим, что число зарядов на единичной площадке равно n, а величина каждого заряда д. Все заряды совершают одинаковые гармонические колебания в одном и том же направлении, с той же амплитудой и фазой. Смещение заряда из его среднего положения описывается функцией x0coswt. Вводя комплексную амплитуду, действительная часть которой дает реальное движение, будем описывать колебание заряда функцией x0eiwt.
Чтобы найти поле, создаваемое всеми зарядами в точке Р, нужно вычислить сначала поле отдельного заряда q, а затем сложить поля всех зарядов. Как известно, поле излучения пропорционально ускорению заряда, т. е.. — w2x0еiwt (и одинаково для всех зарядов). Электрическое поле в точке Р, создаваемое зарядом в точке Q, пропорционально ускорению заряда q, нужно только помнить, что поле в точке Р в момент времени t определяется ускорением заряда в более ранний момент времени t' =t-r/c, где r/c — время, за которое волна проходит расстояние от Q до Р. Поэтому поле в точке Рпропорционально
(30.10)
Подставляя это значение ускорения в формулу для поля, создаваемого зарядом на большом расстоянии, получаем
Однако эта формула не совсем правильна, поскольку нужно брать
Полное поле в точке
Число зарядов в кольце равно произведению площади кольца, 2nrdr, на h— плотность зарядов на единицу площади. Отсюда