Читать «Излучение. Волны. Кванты» онлайн - страница 48
Ричард Фейнман
В теории дифракции есть один род дифракционных явлений, который стоит кратко обсудить. Речь идет о дифракции на непрозрачных экранах. Обычно в элементарных курсах о них говорят гораздо позже, так как для их объяснения нужно использовать довольно сложные формулы суммирования малых векторов. В остальном эти явления не отличаются от уже рассмотренных нами. Все интерференционные явления по существу одинаковы; в них не входят сколько-нибудь сложные понятия, только условия возникновения могут быть более сложными, и тогда векторы поля труднее складывать, вот и все.
Предположим, что свет приходит из бесконечности, попадает на предмет и отбрасывает от него тень. На фиг. 30.7 изображен экран, на который свет отбрасывает тень от предмета АВ, причем источник света удален на расстояние, много большее длины волны. Казалось бы, вне тени интенсивность света максимальна, а внутри должна быть полная темнота. На самом же деле, если откладывать интенсивность как функцию расстояния до края тени, интенсивность будет сначала расти, а затем начнет спадать, колеблясь самым прихотливым образом вблизи края тени (фиг. 30.8). Посмотрим, отчего это происходит. Для объяснения воспользуемся недоказанной нами теоремой, что вместо истинной картины опыта можно ввести эффективные источники, равномерно распределенные вне объекта картины опыта можно ввести эффективные источники, равномерно распределенные вне объекта.
Фиг. 30.7. Далекий источник отбрасывает тень от непрозрачного предмета на экран.
Представим себе эти эффективные источники в виде большого количества близко расположенных антенн и найдем интенсивность в некоторой точке Р. Это очень похоже на то, чем мы занимались до сих пор. Но не вполне, поскольку наш экран теперь находится не на бесконечности. В данном случае нас интересует интенсивность интерферирующих лучей на конечном расстоянии, а не на бесконечности. Интенсивность в некоторой точке дается суммой вкладов от каждой антенны. Сначала возьмем антенну в точке D,прямо напротив Р.Если слегка изменить угол, скажем, подняться на высоту h, лучу потребуется больше времени, чтобы попасть в точку Р(амплитуда тоже изменится, так как расстояние до источника увеличилось, но разница эта очень мала, поскольку расстояние все равно велико, и гораздо менее важна, чем изменение фазы излучения). Далее, разность EP-DPравна h2/2s, т. е. разность фаз пропорциональна квадрату удаления от точки D, тогда как раньше у нас s было бесконечно и разность фаз была линейно связана с /г. Когда фазы зависят от hлинейно, каждый вектор повернут относительно предыдущего на постоянный угол. Теперь же мы должны построить кривую, складывая бесконечно малые векторы при условии, что образуемый ими угол с осью абсцисс растет с увеличением длины кривой не линейным, а квадратичным образом. Явный вид кривой находится с помощью довольно сложных математических методов, но мы всегда можем построить эту кривую, просто откладывая векторы под требуемым углом. В конечном счете мы получаем замечательную кривую (называемую спиралью Корню), изображенную на фиг. 30.8. Как ею пользоваться? Р. Пусть требуется определить интенсивность, скажем, в точке