Читать «Излучение. Волны. Кванты» онлайн - страница 49
Ричард Фейнман
Сложим волны с разными фазами от точки
Весь вклад от области над Вр дается спиральной кривой. Если бы суммирование заканчивалось в некоторой точке, то полная амплитуда представилась бы вектором от Вр до этой точки; в нашем случае суммирование ведется до бесконечности, так что искомая амплитуда есть вектор Врx. Точка на кривой, соответствующая точке Вр на предмете, зависит от положения точки Р, потому что точка D кривой (точка перегиба) всегда относится к выбранной точке Р. Следовательно, в зависимости от положения Р над В начальная точка, откуда проводится вектор, попадает в разные места нижней спирали, и результирующий вектор ВрҐ имеет многочисленные максимумы и минимумы (фиг. 30.9).
Но если мы находимся в точке Q, по другую сторону от Р, то нам понадобится только верхний конец спиральной кривой. Другими словами, начальной точкой результирующего вектора будет не D, a BQ, и, следовательно, книзу от Р интенсивность должна непрерывно падать при удалении Q в область тени.
Есть одна величина, которую можно легко вычислить сразу и таким образом убедиться, что мы здесь что-то понимаем,— это интенсивность в точке, лежащей прямо против края. Эта интенсивность равна 1/4 от интенсивности падающего света. Причина: для точки, лежащей против края предмета (когда Вр совпадает с D на фиг. 30.8), получается половина кривой в отличие от целой кривой, которая была бы получена, если бы точки лежали достаточно далеко в освещенной области. Если точка R расположена достаточно высоко, результирующий вектор проводится от центра одной спирали до центра другой, а для точки на краю тени амплитуда равна половине этого вектора; следовательно, отношение интенсивностей получается равным 1/4.
В этой главе мы вычисляли интенсивность в разных направлениях при различном расположении источников. В заключение выведем формулу, которая нам понадобится в следующей главе, посвященной показателю преломления. До сих пор мы обходились только относительными интенсивностями, а на этот раз мы получим формулу для полной величины поля при условиях, о которых будет рассказано ниже.