Читать «Излучение. Волны. Кванты» онлайн - страница 51
Ричард Фейнман
Интеграл берется в пределах r=0 и r=Ґ. Время t, конечно, зафиксировано, так что единственными меняющимися величинами являются r и r. Отвлечемся пока от постоянных множителей, включая и eiwt, и вычислим интеграл
(30.13)
Для этого учтем соотношение между r и r:
(30.14)
При дифференцировании формулы (30.14) z нужно считать независимым от r, тогда
2rdr = 2rdr,
что очень кстати, поскольку при замене в интеграле rdr на rdr знаменатель r сокращается. Интеграл приобретает более простой вид
(30.15)
. Экспонента интегрируется очень просто. Нужно поставить в знаменатель коэффициент при rв показателе экспоненты и взять саму экспоненту в точках, соответствующих пределам. Но пределы по rотличаются от пределов по р. Когда r=0, нижний предел r=z, т. е. пределы по r равны z и бесконечности. Интеграл (30.15) равен
(30.16)
Вместо (r/с)Ґ мы здесь написали Ґ, поскольку и то и другое означает просто сколь угодно большую величину!
А вот е-iҐ— величина загадочная. Ее действительная часть, равная cos (-Ґ), с математической точки зрения величина совершенно неопределенная. [Хотя можно допустить, что она находится где-то [а может быть и всюду (?)—между +1 и -1!]Но в физической ситуации эта величина может означать нечто вполне разумное и обычно оказывается равной нулю. Чтобы убедиться, что это так в нашем случае, вернемся к первоначальному интегралу (30.15)
Выражение (30.15) можно понимать как сумму большого числа маленьких комплексных чисел, модуль которых ar, a угол в комплексной плоскости q=-wr/с. Попробуем оценить эту сумму графически. На фиг. 30.11 отложены первые пять членов суммы. Каждый отрезок кривой имеет длину Dr и расположен под углом Dq =-w(Dr/с) к предыдущему отрезку. Сумма первых пяти слагаемых обозначена стрелкой из начальной точки к концу пятого отрезка. Продолжая прибавлять отрезки, мы опишем многоугольник, вернемся примерно к начальной точке и начнем описывать новый многоугольник. Чем большее число отрезков мы будем прибавлять, тем большее число раз мы обернемся, двигаясь почти по окружности с радиусом с/w. Теперь понятно, почему интеграл дает при вычислении неопределенный ответ!
Здесь мы должны обратиться к физическому смыслу нашего примера. В любой реальной ситуации плоскость зарядов не может быть бесконечной, а должна где-то оборваться. Если плоскость резко обрывается и ее граница имеет точно форму окружности, то наш интеграл будет равен некоторому значению на этой окружности (см. фиг. 30.11). Если же плотность зарядов
Фиг. 30.11. Вычисление интеграла
графическим способом.
постепенно уменьшается по мере удаления от центра (или обращается в нуль вне некоторой границы неправильной формы, так что для достаточно больших r вклад всего кольца шириной dr равен нулю), то коэффициент ню в точном интеграле убывает, стремясь к нулю. Поскольку длина добавляемых отрезков в этом случае уменьшается, а угол Dq остается тем же самым, график кривой, соответствующей интегралу, будет иметь вид спирали. Спираль оканчивается в центре первоначальной окружности, как изображено на фиг. 30.12. Физически правильное значение интеграла дается величиной А, которой на схеме соответствует расстояние от начальной точки до центра окружности, равное как нетрудно убедиться.