Читать «Большая Советская Энциклопедия (ВЕ)» онлайн - страница 73
БСЭ БСЭ
Евклидовы пространства. Для развития геометрических методов в теории В. п. нужно указать пути обобщения таких понятий, как длина вектора, угол между векторами и т.п. Один из возможных путей заключается в том, что любым двум векторам х и у из R ставится в соответствие число, обозначаемое (х, у ) и называемое скалярным произведением векторов х и у. При этом требуется, чтобы выполнялись следующие аксиомы скалярного произведения:
1) (х, у ) = (у, х ) (перестановочность);
2) (x1 + x2 , y ) = (x1 , y ) + (x2 , y ) (распределительное свойство);
3) (ax, у ) = a (х, у ),
4) (х, х ) ³ 0 для любого х , причем (х, х ) = 0 только для х = 0 .
Обычное скалярное произведение в трёхмерном пространстве этим аксиомам удовлетворяет. В. п., в котором определено скалярное произведение, удовлетворяющее перечисленным аксиомам, называется евклидовым пространством; оно может быть как конечномерным (n-мерным), так и бесконечномерным. Бесконечномерное евклидово пространство обычно называют гильбертовым пространством . Длина |x | вектора x и угол между векторами х и у евклидова пространства определяются через скалярное произведение формулами
Примером евклидова пространства может служить обычное трёхмерное пространство со скалярным произведением, определяемым в векторном исчислении. Евклидово n-мepное (арифметическое) пространство En получим, определяя в n -мepном арифметическом В. п. скалярное произведение векторов x = (l1 , …, ln ) и y = (m1 , …, mn ) соотношением
(x, y ) = l1 m1 + l2 m2 +… + ln mn . (2)
При этом требования 1)—4), очевидно, выполняются.
В евклидовых пространствах вводится понятие ортогональных (перпендикулярных) векторов. Именно векторы х и у называются ортогональными, если их скалярное произведение равно нулю: (х, у ) = 0. В рассмотренном пространстве En условие ортогональности векторов x = (l1 , …, ln ) и y = (m1 , …, mn ), как это следует из соотношения (2), имеет вид:
l1 m1 + l2 m2 +… + ln mn = 0. (3)
Применение В. п . Понятие В. п. (и различные обобщения) широко применяется в математике и её приложениях к естествознанию. Пусть, например, R — множество всех решений линейного однородного дифференциального уравнения yn + a1 (x ) y (n + 1 ) + … + an (x ) y = 0 . Ясно, что сумма двух решений и произведение решения на число являются решениями этого уравнения. Таким образом, R удовлетворяет условиям А. Доказывается, что для R выполнено обобщённое условие В. Следовательно, R является В. п. Любой базис в рассмотренном В. п. называется фундаментальной системой решений, знание которой позволяет найти все решения рассматриваемого уравнения. Понятие евклидова пространства позволяет полностью геометризовать теорию систем однородных линейных уравнений: