Читать «Квантовая механика II» онлайн - страница 129
Ричард Фейнман
§ 6. Явление Мейсснера
& 7. Квантование потока
§ 8. Динамика сверхпроводимости
§ 9. Переходы Джозефсона
§ 1. Уравнение Шредингера в магнитном поле
Эту лекцию я читаю вам для развлечения. Захотелось посмотреть, что получится, если начать читать в немного ином стиле. В курс она не входит, и не думайте, что это попытка обучить вас в последний час чему-то новому. Я скорее воображаю, будто провожу семинар или будто делаю отчет об исследованиях перед более подготовленной аудиторией, перед людьми, которые в квантовой механике уже многое понимают. Основное различие между семинаром и регулярной лекцией в том, что на семинаре докладчик не приводит все стадии, всю алгебру выкладок. Он просто говорит: «Если вы проделаете то-то и то-то, то получится вот что», а в детали не входит. Вот и в этой лекции будут только высказываться идеи и приводиться
Но это не все. Главное — что об этом мне
Обычно та волновая функция, которая появляется в уравнении Шредингера, относится только к одной или к двум частицам. И сама волновая функция классическим смыслом не обладает в отличие от электрического поля, или векторного потенциала, или других подобных вещей. Правда, волновая функция отдельной частицы — это «поле» в том смысле, что она есть функция положения, но классического значения она, вообще говоря, не имеет. Тем не менее бывают иногда обстоятельства, в которых квантовомеханическая волновая функция действительно имеет классическое значение, именно их я и хочу коснуться. Своеобразие квантовомеханического поведения вещества в мелких масштабах обычно не дает себя чувствовать в крупномасштабных явлениях, если не считать стандартных выводов о том, что оно вызывает к жизни законы Ньютона, законы так называемой классической механики. Но существуют порой обстоятельства, в которых особенности квантовой механики могут особым образом сказаться в крупномасштабных явлениях.
При низких температурах, когда энергия системы очень-очень сильно убывает, вместо прежнего громадного количества состояний в игру включается только очень-очень малое количество состояний — тех, которые расположены неподалеку от основного. При таких условиях квантовомеханический характер этого основного состояния может проявиться на макроскопическом уровне. Вот целью этой лекции и будет продемонстрировать связь между квантовой механикой и крупномасштабными эффектами — не обычное обсуждение пути, по которому квантовая механика в среднем воспроизводится ньютоновой механикой, а специальный случай, когда квантовая механика вызывает свои собственные, характерные для нее эффекты в крупных, «макроскопических» размерах.
Начну с того, что напомню вам кое-какие свойства уравнения Шредингера. Я хочу с помощью уравнения Шредингера описать поведение частицы в магнитном поле, потому что явления сверхпроводимости связаны с магнитными полями. Внешнее магнитное поле описывается векторным потенциалом, и вопрос состоит в том, каковы законы квантовой механики в поле векторного потенциала. Принцип, определяющий квантовомеханическое поведение частицы в поле векторного потенциала, очень прост.