Читать «Квантовая механика II» онлайн - страница 125

Ричард Фейнман

Окончательный вывод наш таков: по крайней мере для некоторых квантовомеханических операторов существуют соответствующие им алгебраические операторы в координатном представлении. Все, что мы до сих пор вывели (с учетом трехмерности мира), подытожено в табл. 18.1. Каждый оператор может быть представлен в двух равноценных видах:

либо

либо

Теперь мы дадим несколько иллюстраций применения этих идей. Для начала выявим связь между.

Если применить дважды, получим

Это означает, что можно написать равенство

Или, в векторных обозначениях,

(Члены в алгебраическом операторе, над которыми нет символа оператора ^, означают простое умножение.) Это уравнение очень приятно, потому что его легко запомнить, если вы еще не забыли курса классической физики. Хорошо известно, что энергия (нерелятивистская) состоит из кинетической энергии р2/2m плюс потенциальная, а у нас тоже оператор полной энергии. Этот результат произвел на некоторых деятелей столь сильное впечатление, что они начали стремиться во что бы то ни стало вбить студенту в голову всю классическую физику, прежде чем приступить к квантовой. (Мы думаем иначе!) Параллели очень часто обманчивы. Если у вас есть операторы, то важен порядок различных множителей, а в классическом уравнении он безразличен.

Таблица 18.1 · АЛГЕБРАИЧЕСКИЕ ОПЕРАТОРЫ В КООРДИНАТНОМ ПРЕДСТАВЛЕНИИ

В гл. 15 мы определили оператор р^хчерез оператор смещения D^x[см. формулу (15.27)]:

где d — малое смещение. Мы должны показать, что это эквивалентно нашему новому определению. В соответствии с тем, что мы только что доказали, это уравнение должно означать то же самое, что и

Но в правой части стоит просто разложение y (x+d) в ряд Тэйлора, а y (x+d)— то, что получится, если сместить состояние влево на б (или сдвинуть на столько же вправо систему координат). Оба наши определения р^ согласуются!

Воспользуемся этим, чтобы доказать еще кое-что. Пусть у нас в какой-то сложной системе имеется множество частиц, которым мы присвоим номера 1, 2, 3, ... . (Для простоты остановимся на одномерном случае.) Волновая функция, описывающая состояние, является функцией всех координат х1: х2, x3,... . Запишем ее в виде y (x1, х2, х3, ...). Сдвинем теперь систему (влево) на d. Новая волновая функция

может быть записана так:

Согласно уравнению (18.65), оператор импульса состояния |y> (назовем его полным импульсом) равняется

Но это все равно, что написать

Операторы импульса подчиняются тому правилу, что полный импульс есть сумма импульсов отдельных частей. Здесь, как видите, все чудесным образом переплетено и разные вещи взаимно согласуются.

§ 6. Момент количества движения

Для интереса рассмотрим еще одну операцию — операцию орбитального момента количества движения. В гл. 15 мы определили оператор J^zчерез R^z(j) — оператор поворота на угол j вокруг оси z. Рассмотрим сейчас систему, описываемую всего лишь одной-единственной волновой функцией y(r), которая является функцией одних только координат и не учитывает того факта, что спин у электрона должен быть направлен либо вверх, либо вниз. Это значит, что мы собираемся пока пренебречь внутренним моментом количества движения и намерены думать только об орбитальной части. Чтобы подчеркнуть различие, обозначим орбитальный оператор L^zи определим его через оператор поворота на бесконечно малый угол e формулой