Читать «Квантовая механика II» онлайн - страница 124

Ричард Фейнман

Ну что ж, начнем раскладывать (18.48) в x-представлении.

Напишем

Но теперь надо знать другое: как выглядит состояние |b> в x-представлении. Если мы узнаем это, мы сможем взять интеграл. Итак, наша задача — найти функцию b (x)=<x|b>. Ее можно найти следующим образом. Мы видели в гл. 14, § 3, как <р|b> связано с <x|b>. Согласно уравнению (14.24),

Если нам известно <р|b>, то, решив это уравнение, мы найдем <x|b>. Но результат, конечно, следовало бы как-то выразить через y (x)=<x|y>, потому что считается, что именно эта величина нам известна. Будем теперь исходить из (18.47) и, опять применив (14.24), напишем

Интеграл берется по х, поэтому р можно внести под интеграл

Теперь сравним это с (18.53). Может быть, вы подумали, что <x|b> равно py(x)? Нет, напрасно! Волновая функция <х|b>=b(x) может зависеть только от х, но не от р. В этом-то вся трудность.

К счастью, кто-то заметил, что интеграл в (18.55) можно проинтегрировать по частям. Производная e-ipx/hпо х равна (-i/h)pe-ipx/h, поэтому интеграл (18.55) это все равно, что

Если это проинтегрировать по частям, оно превратится в

А вот теперь сравним этот результат с (18.53). Вы видите, что

Все необходимое, чтобы взять интеграл в (18.52), у нас уже есть. Окончательный ответ таков:

Мы узнали, как выглядит (18.48) в координатном представлении. Перед нами начинает постепенно вырисовываться интересная картина. Когда мы задали вопрос о средней энергии состояния |y>, то ответ был таков:

То же самое в координатном мире записывается так:

Здесь — алгебраический оператор, который действует на функцию от х.

Когда мы задали вопрос о среднем значении х, то тоже обнаружили, что ответ имеет вид

В координатном мире соответствующие уравнения таковы:

Когда мы задали вопрос о среднем значении р, то ответ оказался

В координатном мире эквивалентные уравнения имели бы вид

Во всех наших трех примерах мы исходили из состояния |y> и создавали новое (гипотетическое) состояние с помощью квантовомеханического оператора. В координатном представлении мы генерируем соответствующую волновую функцию, действуя на волновую функцию y (x) алгебраическим оператором. Можно говорить о взаимнооднозначном соответствии (для одномерных задач) между

В этом перечне мы ввели новый символ для алгебраического оператора (h/i)д/дx:

и поставили под значок х, чтобы напомнить, что имеем пока дело с одной только x-компонентой импульса.

Результат этот легко обобщается на три измерения. Для других компонент импульса

При желании можно даже говорить об операторе вектора импульса и писать

где ех, еy и еz — единичные векторы в трех направлениях. Можно записать это и еще изящнее:

Окончательный вывод наш таков: по крайней мере для некоторых квантовомеханических операторов существуют соответствующие им алгебраические операторы в координатном представлении. Все, что мы до сих пор вывели (с учетом трехмерности мира), подытожено в табл. 18.1. Каждый оператор может быть представлен в двух равноценных видах: