Читать «Большая Советская Энциклопедия (ОП)» онлайн - страница 83
БСЭ БСЭ
Определение через абстракцию
Определе'ние че'рез абстра'кцию , способ описания (выделения, «абстрагирования») не воспринимаемых чувственно («абстрактных») свойств предметов путём задания на предметной области некоторого отношения типа ( , ). Такое отношение, обладающее свойствами , и , индуцирует разбиение предметной области на непересекающиеся классы (классы абстракции, или классы эквивалентности), причём элементы, принадлежащие одному и тому же классу, неотличимы по определяемому т. о. свойству. Так, например, в политической экономии определяется стоимость (через отношение обмениваемости товаров), в теории множеств — мощность множеств (через отношение теоретико-множественной эквивалентности). О. ч. а. всегда (хотя обычно и неявно) опирается на т. н. принцип абстракции, или принцип свёртывания, согласно которому каждому свойству соотносится класс (множество) объектов, обладающих этим свойством. В практических приложениях этот принцип весьма удобен, естествен и плодотворен; но постулирование его как универсального методологического закона приводит к трудностям, проявляющимся прежде всего в виде (логики и теории множеств). См. , , .
Определённый интеграл
Определённый интегра'л , одно из основных понятий математического анализа, к которому приводится решение ряда задач геометрии, механики, физики. О. и. является числом, равным пределу сумм особого вида (интегральных сумм), соответствующих функции f (x ) и отрезку [ а , b ]; обозначается . Геометрически О. и. выражает площадь «криволинейной трапеции», ограниченной отрезком [ а , b ] оси Ох , графиком функции f (x ) и ординатами точек графика, имеющих абсциссы а и b . Точное определение и обобщение О. и. см. в статьях , .
Определитель
Определи'тель , детерминант, особого рода математическое выражение, встречающееся в различных областях математики. Пусть дана порядка n , т. е. квадратная таблица, составленная из п 2 элементов (чисел, функций и т. п.):
(1)
(каждый элемент матрицы снабжён двумя индексами: первый указывает номер строки, второй — номер столбца, на пересечении которых находится этот элемент). Определителем матрицы (1) называется многочлен, каждый член которого является произведением n элементов матрицы (1), причём из каждой строки и каждого столбца матрицы в произведение входит лишь один сомножитель, т. е. многочлен вида