Читать «Числа: от арифметики до высшей математики» онлайн - страница 20

Айзек Азимов

Может показаться, что если мы пойдем вверх по числовой оси, то возможность найти следующее простое число уменьшается и в конце концов какое-то простое число станет самым большим возможным простым числом. Но это не соответствует действительности. Еще 2200 лет тому назад греческий математик Эвклид доказал, что не существует такого сколь угодно большого простого числа, для которого нельзя было бы найти еще большее. То есть самого большого простого числа в принципе не существует.

Как я уже говорил, греки любили разгадывать разные числовые головоломки и выискивать закономерности. Например, они вычисляли суммы сомножителей, на этот раз включая единицу, для разных чисел и смотрели, что же получается. Они выяснили, что суммы сомножителей могут быть меньше, Или больше самого числа, или равны самому числу. Например, сумма сомножителей 10 (1, 2 и 5) равна только 8. Число 10 называется неполным числом. Сумма сомножителей числа 12 (1, 2, 3, 4 и 6) равна 16, то есть она больше самого числа. Такие числа, как 12, называются избыточными.

Сумма сомножителей числа 6 (1, 2 и 3) равна самому числу, то же самое относится и к числу 28 (1, 2, 4, и 7). Такие числа греки называли совершенными.

Есть еще одна забавная закономерность. Сумма сомножителей числа 220 (1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110) равна 284, и в то же время сумма сомножителей числа 284 (1, 2, 4, 71, 142) равна 220. Такие числа греки называли содружественными числами.

Разделение чисел на простые, совершенные, содружественные и так далее не имеет большой практической ценности, но в течение тысячелетий числовые закономерности вызывали восторг и любопытство математиков. Интерес к ним не угас и в наши дни.

Считаем и измеряем

До сих пор мы с вами имели дело с обычными числами, при помощи которых можно пересчитывать различные объекты: 1, 2, 3… Очень часто нам и не требуются другие числа.

Например, подобным числом может быть определено количество мальчиков в классной комнате. В комнате может быть 4 мальчика, 5 мальчиков или другое число мальчиков. В любом случае это будет вполне определенное число. Но вы никак не можете заявить: «Ну, я все тщательно подсчитал, и выяснилось, что в комнате больше чем 4 мальчика, но меньше чем 5. Я думаю, их какое-то промежуточное число, между 4 и 5».

Если вы считаете какие-то объекты, то между 4 и 5 для вас нет никаких других чисел. В комнате либо 4 мальчика, либо 5, но нет никакого промежуточного числа. Если в комнату, где уже находится 5 мальчиков, войдет еще 1, то в комнате окажется б мальчиков, причем ровно 6, а не около б или чуточку больше 6.

Однако если вы поинтересуетесь, сколько времени мальчики посвятили занятиям, вы можете получить приблизительный ответ: «Они занимались больше одного часа, я не уверен, но, по-моему, меньше двух часов».

В данном случае ответ не лишен смысла, поскольку существует отрезок времени, больший одного часа, но меньший двух часов. Время — это то, что измеряют, а не пересчитывают.