Читать «Число, пришедшее с холода. Когда математика становится приключением» онлайн - страница 129

Рудольф Ташнер

(a + 1)p = (a + 1) (a + 1) (a + 1)… (a + 1) = ap + 1 + …

То, что здесь стыдливо обозначено точками …, — это все остальное, что получается от перемножения друг на друга всех слагаемых. В ходе такого перемножения будут получаться степени ap — 1ap — 2ap — 3, и вопрос заключается в том, насколько часто будет встречаться каждая из этих степеней. Например, степень ap — 1 получается оттого, что p — 1 первых слагаемых a перемножают с одним из всех вторых слагаемых 1. Всего возможностей для такого перемножения существует ровно p. Таким образом, степень a p — 1 появится на месте точек в виде pap — 1. Или степень ap — 2 появляется в результате того, что p — 2 первых слагаемых a перемножаются с двумя вторыми слагаемыми. Сколько раз эта степень встретится в результатах перемножения? Для одного из обоих вторых слагаемых 1 существует p возможностей выбора, а для другого второго слагаемого таких возможностей остается уже p — 1. Всего таких возможностей, следовательно, будет p × (p — 1). Однако это выражение надо разделить на произведение 1 × 2, потому что совершенно несущественно, какое из двух слагаемых 1 было выбрано первым, а какое — вторым. Таким образом, степень ap — 2встречается среди слагаемых, замененных точками,

раз. В общем виде можно представить, что степень ap — n возникает в результате того, что p — nпервых слагаемых a перемножают в точности с n вторых слагаемых 1. Сколько раз встретится в окончательном результате перемножения степень ap — n? Для первого из n вторых слагаемых существует ровно p возможных выборов, для второго слагаемого 1 существует только p – 1 возможных выборов, и так далее, вплоть до n-го слагаемого 1, для которого число возможных выборов равно p — n + 1. В результате число возможных выборов становится равно p × (p — 1) × … × (p – n + 1). Это число, однако, надо разделить на произведение 1 × 2 × 3 × … × n, ибо какое из n слагаемых 1 будет выбрано в качестве первого, второго, …, n-го, представляется несущественным. Таким образом, степень ap — n встретится на месте точек

раз.

Множители перед степенями a выглядят дробями только по видимости; на самом деле это целые числа. Другими словами, знаменатель записанной дроби наверняка является делителем числителя. Тем не менее простое число p, записанное первым, не делится на знаменатель, так как именно в этом и заключается суть простого числа. Поэтому множители, стоящие перед степенями a, начиная с ap — 1и заканчивая a = a1, являются не только целыми числами, но и числами, кратными простому числу p.

Обобщая, получаем:

(a + 1)p = ap + 1 + …,

причем все числа, скрытые за обозначением …, делятся на простое число p.

Допустим, утверждает далее Ферма, что мы уже знаем, что ap — a без остатка делится на p. Тогда, согласно уравнению

(a + 1)p –(a + 1) = ap + 1 + … — (a + 1) = ap + 1 + … – a — 1 = ap — a + …

и вследствие того факта, что все числа, скрытые за многоточием, делятся на p, разность (a + 1)p — (a + 1) тоже делится на p.

Тем самым Ферма наглядно показал то, что хотел доказать, ибо 1p — 1, очевидно, делится на p. Проведенное выше рассуждение показывает, что отсюда и 2p — 2 тоже делится на p. Точно такое же рассуждение доказывает, что и 3p — 3 тоже делится на p. Точно такое же рассуждение, проведенное еще раз, доказывает, что и 4p — 4 делится на p. Так можно от каждого числа a, о котором известно, что ap — a делится на p, перейти к следующему числу a + 1 и уже относительно его установить, что (a + 1)p — (a + 1) делится без остатка на p.