Читать «Математический аппарат инженера» онлайн - страница 46
Виталий Петрович Сигорский
е) Если я поеду на автобусе, то опоздаю на работу или я воспользуюсь такси.
ж) Андрей помогает Петру или Петр помогает Андрею, или они помогают друг другу.
15. Запишите формулу, соответствующую высказыванию: «Программа будет выполнена тогда и только тогда, когда закончатся испытания и показатели будут удовлетворительны; если программа не будет выполнена, сотрудники не получат премию или будут пересмотрены технические условия».
16. Даны простые высказывания: x1 - «идет дождь), x2 - «очень жарко».
а) Запишите формулу сложного высказывания «Неверно, что идет дождь и очень жарко».
б) Преобразуйте формулу по закону де Моргана и составьте соответствующее высказывание.
в) Убедитесь в тожественности исходного и преобразованного высказываний.
17. Путешественник остановился у развилки дорог, ведущих в пункты А и В, и ему нужно выяснить, в какой именно пункт ведет каждая из дорог. Находившиеся у развилки два человека заявили, что они могут ответить только на один вопрос и что один из них всегда правдив, а другой лжец. Какой вопрос должен задать путешественник, чтобы в любом случае ответ на него содержал необходимою информацию?
а) Решите задачу путем непосредственных рассуждений без применения алгебры логики.
- 72 -
б) Представьте ситуацию в виде сложного высказывания, составленного из простых.
в) Запишите соответствующую формулу и таблицу соответствия.
г) По таблице соответствия сформулируйте искомый вопрос.
18. Высказывание является логически истинным, если соответствующая ему формула тождественно равна единице, и логически ложным, если формула равна нулю. Определите с помощью таблиц соответствия, каким высказываниям соответствуют приведенные ниже формулы (истинным, ложным или ни тем и не другим): а) p ∼ p; б) p → p̅; в)(p∨q) ∼ pq; г)(p→q̅) → (q → p̅); д)(p→ q)→ p; е) ((p→ q)→ p)→ p; ж) p̅∨̅q̅ ∼ pq .
19. При x1 = 1; x2 = 0; x3 = 0 и x4 = 1 найдите значения каждой из следующих функций:
20. Пусть X — множество сотрудников отдела и на этом множестве определены относительно переменной x ∈ X одноместные предикаты P(x), Q(x), R(x), означающие соответственно: x — занимается спортом, изучает иностранный язык, имеет изобретения. Расшифруйте предикаты, образованные с помощью следующих логических операций: а) P(x) ∨ Q(x); б) P(x) Q(x); в) P̅(x) Q(x); г) Q(x) ∼ P(x); д) P̅(x) ∼ (Q(x) ∨ R(x)).
21. Пусть V — множество вершин и E — множество ребер графа, причем ребро e ∈ E соединяет вершины x,y ∈V. Что означают предикаты P(x,y), Q(e, x, y), R(x,e)?
22. Каким десятичным числам соответствуют следующие двоичные числа: а) 1011; б) 1000110; в) 110100111?
23. Переведите в двоичную систему счисления десятичные числа: а) 51; б) 64; в) 125; г) 1000.
24. Выполните в двоичной системе следующие операции над десятичными числами: 21 + 37; 31 + 105; в) 25 · 8; г) (8 + 19) · 11; д) 24 · 8 — 17. Проверьте полученные результаты в десятичной системе.
25. Переведите в двоичную систему счисления с точностью до пяти двоичных знаков после запятой числа: а) 0,131; б) 0,25; в) 175,26.