Читать «Для юных математиков. Веселые задачи» онлайн - страница 47
Яков Исидорович Перельман
Сколько надо поставить стаканов на свободную чашку весов, чтобы уравновесить бутылку? ЗАДАЧА № 29 Гирей и молотком
Надо развесить 2 килограмма сахарного песку на 200 граммовые пакеты. Имеется только одна 500-граммовая гиря, да еще молоток, весящий 900 граммов.
Как получить все 10 пакетов, пользуясь этой гирей и молотком? ЗАДАЧА № 30 Задача Архимеда
Самая древняя из головоломок, относящихся к взвешиванию – без сомнения, та, которую древний правитель сиракузский Гиерон задал знаменитому математику Архимеду.
Предание повествует, что Гиерон поручил мастеру изготовить венец для одной статуи и приказал выдать ему необходимое количество золота и серебра. Когда венец был доставлен, взвешивание показало, что он весит столько же, сколько весили вместе выданные золото и серебро. Однако правителю донесли, что мастер утаил часть золота, заменив его серебром. Гиерон призвал Архимеда и предложил ему определить, сколько золота и сколько серебра заключает изготовленная мастером корона. Архимед решил эту задачу, исходя из того, что чистое золото теряет в воде 20-ю долю своего веса, а серебро – 10-ю долю.
Если вы желаете попытать свои силы на подобной задаче, примите, что мастеру было отпущено 8 килограммов золота и 2 кг серебра, и что, когда Архимед взвесил корону под водой, она весила не 10 кг, а всего 9 1/4 кг. Попробуйте определить по этим данным, сколько золота утаил мастер. Венец предполагается изготовленным из сплошного металла, без пустот.
РЕШЕНИЯ ЗАДАЧ О ВЕСАХ И ВЗВЕШИВАНИИ (№№ 21–30)
Решение задачи № 21Обыкновенно отвечают, что бревно, увеличенное в толщину вдвое, но вдвое же укороченное, не должно изменить своего веса Однако это не верно. От увеличения поперечника вдвое объем круглого бревна увеличивается вчетверо; от укорочения же вдвое объем уменьшается всего в два раза. Поэтому толстое короткое бревно должно быть вдвое тяжелее длинного тонкого, т. е. весить 60 килограммов.
Решение задачи № 22При погружении в воду железная вещь (сплошная) теряет 8-ю долю своего веса [12] . Поэтому гири под водой будут иметь 7/8 прежнего веса, гвозди – также 7/8 своего прежнего веса. И так как гири были в 10 раз легче гвоздей, то и под водой они легче их в 10 раз. Следовательно, десятичные весы останутся и под водой в равновесии.
Решение задачи № 23Из условия задачи мы знаем, что, во-первых,
вес бутылки + вес керосина = 1000 граммов.
А во-вторых, так как кислота вдвое тяжелее керосина, мы знаем, что
вес бутылки + двойной вес керосина = 1600 граммов.
Отсюда ясно, что разница в весе 1600–1000, т. е. 600 граммов, есть вес керосина в объеме бутылки. Но бутылка вместе с керосином весит 1000граммов; значит, бутылка весит 1000-600 = 400 граммов.
Действительно: вес кислоты (1600-400 = 1200 гр.) оказывается вдвое больше веса керосина.
Решение задачи № 243/4 бруска мыла + 3/4 килограмма весят столько, сколько целый брусок. Но в целом бруске содержится 3/4 бруска + 1/4 бруска. Значит, 1/4 бруска весит 3/4 килограмма. И следовательно, целый брусок весит в четыре раза больше, чем 3/4 кг, т. е. 3 килограмма.
Решение задачи № 25Сравнивая оба взвешивания, легко видеть, что от замены одной кошки одним котенком вес груза уменьшился на 15–13, т. е. на 2 кг. Отсюда следует, что кошка тяжелее котенка на 2 кг. Зная это, заменим при первом взвешивании всех четырех кошек котятами: у нас будет тогда всех 4+3 = 7 котят, а стрелка весов вместо 15 килограммов покажет на 2x4, т. е. на 8 кг меньше. Значит, 7 котят весят 15-8 = 7 килограммов.
Отсюда ясно, что котенок весит 1 килограмм, взрослая же кошка 1+2 = 3 килограмма.
Решение задачи № 26Сравним первое и второе взвешивание. Вы видите, что раковину при первом взвешивании мы можем заменить 1 кубиком и 8 бусинами, потому что они имеют одинаковый вес. У нас оказалось бы тогда на левой чашке 4 кубика и 8бусин, и это уравновешивалось бы 12 бусинами. Сняв теперь с каждой чашки по 8 бусин, мы не нарушим равновесия, останется же у нас на левой чашке 4 кубика, на правой – 4 бусины. Значит, кубик и бусина весят одинаково.
Теперь ясно, сколько бусин весит раковина: заменив (второе взвешивание) 1 кубик на правой чашке бусиной, узнаем, что
вес раковины = весу 9 бусин.
Результат наш легко проверить: замените при первом взвешивании кубики и раковины на левой чашке соответственным числом бусин: получите 3+9 = 12, как и должно быть.
Решение задачи № 27Заменим при первом взвешивании 1 грушу 6-ю персиками и яблочком: мы вправе это сделать, так как груша весит столько же, сколько 6персиков и яблочко. У нас окажется на левой чашке 4 яблочка и 6 персиков, на правой – 10 персиков. Сняв с обеих чашек по 6персиков, узнаем, что 4 яблочка весят столько, сколько и 4 персика. Другими словами, один персик весит столько же, сколько одно яблочко. Теперь легко уже сообразить, что вес груши равен весу 7 персиков.
Решение задачи № 28Задачу эту можно решать на разные лады. Вот один из способов.
Заменим при третьем взвешивании каждый кувшин одной бутылкой и 1стаканом (из первого взвешивания мы видим, что весы при этом должны оставаться в равновесии). Мы узнаем тогда, что 2 бутылки и 2 стакана уравновешиваются 3 блюдцами. Каждую бутылку мы, на основании второго взвешивания, можем заменить 1 стаканом и 1 блюдцем. Окажется тогда, что
4 стакана и 2 блюдца уравновешиваются 3 блюдцами.
Сняв с каждой чашки весов по 2 блюдца, узнаем, что
4 стакана уравновешиваются 1 блюдцем.
И следовательно, бутылка уравновешивается (ср. второе взвешивание) 5 стаканами.
Решение задачи № 29Порядок отвешивания таков. Сначала кладут на одну чашку молоток, на другую гирю и столько сахарного песку, чтобы чашки уравновесились; ясно, что насыпанный на эту чашку песок весит 900–500 = 400 граммов. Ту же операцию выполняют еще 3 раза; остаток песку весит 2000-(4x400) = 400 граммов.
Теперь остается только каждый из пяти полученных 400-граммовых пакетов разделить пополам, на два равных по весу пакета. Делается это без гирь очень просто: рассыпают содержимое 400-граммового пакета в два картуза, поставленные на разных чашках, пока весы не уравновесятся.
Решение задачи № 30 Если бы заказанный венец был сделан целиком из чистого золота, он весил бы вне воды 10 кг, а под водой потерял бы 20-ю долю этого веса, т. е. полкилограмма. В действительности же венец, мы знаем, теряет в воде не 1/2 кг, а 10 – 9 1/4 = 3/4 кг. Это потому, что он содержит в себе серебро, металл, теряющий в воде не 20-ю, а 10-ю долю своего веса. Серебра должно быть в венце столько, чтобы венец терял в воде не 1/2 кг, а 3/4 кг – на 1/4 кг более. Если в нашем чисто золотом венце заменим мысленно 1 кг золота серебром, то венец будет терять в воде больше, нежели прежде, на 1/10 – 1/20 = 1/20 кг. Следовательно, чтобы получилось требуемое увеличение потери веса на 1/4 кг, необходимо заменить серебром столько килограммов золота, сколько раз 1/20 кг содержится в 1/4 кг; но 1/4 : 1/20 = 5. Итак, в венце было 5 кг серебра и 5 кг золота, – вместо выданных 2 кг серебра и 8 кг золота. Три килограмма золота было утаено и заменено серебром.