Читать «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews» онлайн - страница 93

Владимир Георгиевич Брюков

Заметим также, что представленный в таблице средний диапазон интервального прогноза (руб.) вычислен путем суммирования всех диапазонов интервального прогноза по определенной статистической модели, которые затем делятся на общее количество наблюдений во временном ряде. В свою очередь средний диапазон интервального прогноза (%) находится по следующей формуле:

Средний диапазон интервального прогноза (руб.): Средний фактический курс доллара × 100 %.

(6.11)

Судя по табл. 6.26, по всем четырем параметрам наиболее оптимальные показатели у стационарной модели с оптимизированным временым рядом, в то время как наименее оптимальные — у стационарной модели с полным временным рядом. Сравнивая две нестационарные модели, можно прийти к выводу, что модель с оптимизированным временным рядом превосходит модель с полным временным рядом по трем параметрам, незначительно уступая ей лишь по точности интервальных прогнозов (при 95 %-ном уровне надежности).

Контрольные вопросы и задания

1. Почему при составлении статистической модели со стационарной ARM А-структурой мы были вынуждены перейти от исходного временнoго ряда к логарифмическому временному ряду? В каком случае расширенный тест Дикки — Фуллера отвергает нулевую гипотезу о наличии единичного корня? Какой вывод можно сделать в этом случае о стационарности временнбго ряда?

2. Повторите весь перечень действий, необходимых для построения статистической модели, представляющей собой уравнения авторегрессии (AR) или уравнения авторегрессии со скользящей средней (ARMA). Сколько всего пунктов в этом перечне и можно ли его при необходимости расширить?

3. Каким образом коррелограмма используется для построения моделей авторегрессии и моделей авторегрессии со скользящей средней? Как найти с помощью автокорреляционной и частной автокорреляционной функций величину лага для лаговой переменной AR и для скользящей средней МА?

4. Какой тест используется для проверки модели авторегрессии со скользящей средней на автокорреляцию в остатках? Как проверяется на стационарность ARMA-структура этой статистической модели? К какому значению стремятся функции импульсного и накопленного ответа у стационарной модели? Как изменяется по мере увеличения лага автокорреляция и частная автокорреляция в остатках стационарной статистической модели?

5. Какие выводы можно сделать о стабильности стационарной и нестационарной статистических моделей, если сравнить табл. 6.11 и табл. 5.9? Какая из этих моделей продемонстрировала большую точность в прогнозах после 1998 г.?

6. Сравните точность стационарной и нестационарной статистических моделей в целом за весь период и за различные периоды времени? Какая из этих моделей оказалась точнее за период, начиная с 1999 г.? Подкрепите свой вывод конкретными цифрами.

7. Чем объясняется широкий диапазон интервальных прогнозов для большей части наблюдений, полученных по модели log(USDollar) = с + а × log(USDollar(-l))? С помощью какого теста мы смогли построить стационарную статистическую модель с оптимизированным временным рядом? Назовите лучшую статистическую модель (из числа уже проанализированных) с точки зрения индекса оптимальности интервальных прогнозов.