Читать «Teopeмa Гёделя» онлайн - страница 9

Джеймс Рой Ньюмен

Все попытки решения проблемы непротиворечивости наталкивались на одно и то же затруднение: аксиомы интерпретировались с помощью моделей, содержащих бесконечное множество элементов. Ввиду этого ни одну из таких моделей нельзя было обозреть в конечное число шагов, так что истинность аксиом все еще оставалась под сомнением. Индуктивное рассуждение, обосновывающее истинность евклидовой геометрии, использует лишь конечное число наблюдаемых фактов, согласующихся, по-видимому, с аксиомами. Но заключение, по которому эта согласованность аксиом с наблюдаемыми фактами сохраняет свою силу для всей области и может служить оправданием системы аксиом в целом, само основано на экстраполяции от конечного к бесконечному.

Каким образом можно было бы обосновать законность скачка через пропасть, отделяющую конечное от бесконечного? Следует отметить, что упомянутая трудность уменьшается, — если и не совсем устраняется, — когда удается построить модель, состоящую лишь из конечного числа элементов. Примером такой конечной модели может служить описанная выше модель-треугольник, посредством которой мы установили совместимость постулатов, описывающих классы К и L. В таких случаях сравнительно легко фактически проверить, действительно ли все элементы модели удовлетворяют постулатам, и тем самым убедиться в истинности (а значит, и в совместимости) самих постулатов. Скажем, истинность первого из упомянутых только что постулатов удостоверяется тем фактом, что через каждые две вершины «модельного» треугольника действительно проходит в точности одна его сторона. Поскольку все элементы такой модели и интересующие нас отношения между ними доступны непосредственно и полному обозрению, а опасности двусмысленного истолкования результатов такого исследования практически нет, совместимость системы постулатов не может быть подвергнута хоть сколько-нибудь обоснованному сомнению.

Но, к сожалению, бОльшая часть систем постулатов, используемых в качестве основы существенно важных разделов математики, не может быть интерпретирована с помощью конечных моделей. Поэтому мы явно заходим в тупик. Конечные модели в принципе достаточны для установления совместимости некоторых систем постулатов; но эти системы имеют для математики второстепенное значение. Бесконечные же модели, необходимые для интерпретации большей части важных для математики систем постулатов, мы умеем описывать лишь в самых общих словах и не можем дать никакой твердой гарантии, что такие описания сами свободны от скрытых противоречий.

Конечно, хотелось бы быть уверенными в непротиворечивости формулировок, описывающих бесконечные модели, но таких, что все используемые ими основные понятия представляются совершенно «ясными» и «отчетливыми». Но история науки не может похвастаться тем, что ей везло на доктрины, оперирующие исключительно ясными и отчетливыми идеями и покоящиеся на твердой интуитивной основе, а именно на них и приходится делать весь расчет. В некоторых областях математики, для которых существенную роль играют различные допущения о бесконечных совокупностях, были обнаружены весьма серьезные противоречия, и это несмотря на интуитивную ясность понятий, используемых при этом, и кажущуюся корректность применяемых в данных теориях умственных конструкций. Такие противоречия (именуемые обычно «антиномиями») были обнаружены, в частности, в построенной Георгом Кантором в конце XIX в. теории бесконечных множеств; противоречия эти показали, что кажущаяся ясность даже такого элементарного понятия, как понятие множества (класса, совокупности), не может обеспечить непротиворечивости ни одной конкретной системы, в которой используется такое понятие. Поскольку же математическая теория множеств, в которой рассматриваются свойства совокупностей элементов, часто провозглашается основой для остальных разделов математики (в частности, элементарной арифметики), естественно спросить, не проникают ли противоречия, подобные тем, что были обнаружены в формулировке теории бесконечных множеств, и в другие математические дисциплины.