Читать «Teopeмa Гёделя» онлайн - страница 8

Джеймс Рой Ньюмен

Но приведенное рассуждение не является исчерпывающим доказательством непротиворечивости геометрии Римана: ведь оно существенно опирается на допущение о непротиворечивости геометрии Евклида. Так что теперь неизбежно встает вопрос: а действительно ли непротиворечива сама геометрия Евклида?

По давно установившейся традиции на такой вопрос отвечали обычно в том духе, что «аксиомы Евклида истинны, а стало быть, и непротиворечивы». Но такой ответ мы уже не можем более рассматривать как удовлетворительный (мы еще вернемся к этой теме и разъясним подробнее, в чем именно заключается его неудовлетворительность). Другой ответ состоит в том, что евклидовские аксиомы согласуются с фактическими — хотя и ограниченными — данными нашего опыта и наблюдения, относящимися к пространству, и что, принимая эти аксиомы, мы вправе обобщить, экстраполировать наши знания о некоторой ограниченной области. Однако самое большее, на что мы можем рассчитывать, исходя из таких «индуктивных» соображений, — то, что аксиомы «правдоподобны», истинны «с большой вероятностью».

Следующий важный шаг в решении обсуждаемой здесь проблемы непротиворечивости евклидовой геометрии предпринял Гильберт. Основная идея его метода подсказана аналитической геометрией, восходящей еще к Декарту. В предложенной Гильбертом «декартовской» интерпретации евклидовских аксиом они очевидным образом становятся истинными алгебраическими утверждениями. Например, фигурирующее в аксиомах плоской геометрии слово «точка» должно означать теперь пару действительных чисел, «прямая» — числовое соотношение, выражаемое уравнением первой степени с двумя неизвестными, «окружность» — числовое соотношение, выражаемое квадратным уравнением некоторого специального вида, и т. д. Геометрическое предложение, гласящее, что две различные точки однозначным образом определяют некоторую прямую, переходит теперь в истинное утверждение алгебры, согласно которому две различных пары действительных чисел однозначно определяют некоторое линейное уравнение; геометрическая теорема, согласно которой прямая и окружность пересекаются не более чем в двух точках, переходит в алгебраическую теорему о том, что система, состоящая из линейного и квадратного уравнений с двумя неизвестными, имеет самое большее две пары действительных корней, и т. д. Короче говоря, непротиворечивость евклидовских постулатов обосновывается тем обстоятельством, что они выполняются на некоторой алгебраической модели.

Такой метод доказательства непротиворечивости весьма плодотворен и эффективен. Но и при этом остаются высказанные выше возражения. В самом деле, ведь и здесь проблема, поставленная для одной области, лишь переводится в другую область. Гильбертовское доказательство непротиворечивости его системы геометрических постулатов показывает, что если «алгебра» (точнее, арифметика действительных чисел) непротиворечива, то непротиворечива и эта геометрия. Ясно, что доказательство, существенно зависящее от предположения о непротиворечивости некоторой другой системы, не является «абсолютным» доказательством непротиворечивости.