Читать «Teopeмa Гёделя» онлайн - страница 6
Джеймс Рой Ньюмен
Следует отметить, что некоторые из этих систем не допускают столь очевидных интуитивных (т. е. согласующихся с обыденным словоупотреблением) интерпретаций, как, например, евклидова геометрия или арифметика, но это обстоятельство отнюдь не должно внушать тревогу. Ведь интуиция — штука довольно- таки растяжимая. Нашим детям, возможно, нетрудно будет принять в качестве интуитивно очевидных истин некоторые парадоксальные утверждения теории относительности, не смущают же нас некоторые идеи, отнюдь не казавшиеся интуитивно очевидными нашим предкам. Интуиция — не слишком-то надежный руководитель; во всяком случае ее нельзя считать удовлетворительным критерием для оценки истинности и плодотворности научных открытий.
Однако усугубившаяся абстрактность математики породила и более серьезную проблему: для каждой данной системы постулатов встает вопрос, является ли она внутренне непротиворечивой, т. е. не может ли оказаться, что из этой системы выводятся теоремы, противоречащие друг другу. Проблема не представляется очень уж актуальной, если речь идет об аксиомах, описывающих некоторую определенную и хорошо известную область объектов; если данные аксиомы действительно верны для данной области объектов, вполне естественно считать систему непротиворечивой. Коль скоро, например, предполагалось, что аксиомы Евклида являются истинными утверждениями о пространстве (или о пространственных объектах), то никакой математик до середины XIX столетия не стал бы просто и рассматривать всерьез вопрос о том, нельзя ли из этих аксиом получить пару противоречащих друг другу теорем. Такая уверенность в непротиворечивости евклидовой геометрии основывалась на том совершенно разумном принципе, согласно которому логически несовместимые утверждения не могут быть одновременно истинными; таким образом, никакое множество истинных утверждений (а именно это предполагалось относительно аксиом Евклида) не должно быть внутренне непротиворечивым.
Известны различные виды неевклидовых геометрий. Вначале системы аксиом для таких геометрий рассматривались как безусловно ложные по отношению к окружающему нас пространству, да и вопрос об их истинности относительно какой бы то ни было другой области казался весьма сомнительным. В связи с этим и проблема доказательства внутренней непротиворечивости неевклидовых систем казалась весьма трудной, если вообще осуществимой. Скажем, в геометрии Римана евклидов постулат параллельности заменяется соглашением, согласно которому через произвольную точку, не лежащую на данной прямой, нельзя провести ни одной прямой, параллельной данной.