Читать «Излучение. Волны. Кванты» онлайн - страница 36

Ричард Фейнман

(29.10)

Если это нам известно, то мы немедленно получаем R:

(29.11)

Итак, мы снова получили синусоидальную волну, но с новой фазой и новой амплитудой. Вообще результат сложения двух синусоидальных волн есть синусоидальная волна с новой амплитудой AR, называемой результирующей амплитудой, и новой фазой jR, называемой результирующей фазой. В нашем частном случае результирующая амплитуда равна

(29.12)

а результирующая фаза есть арифметическое среднее обеих фаз. Таким образом, поставленная задача полностью решена. Предположим теперь, что мы забыли формулу сложения косинусов. Тогда можно применить другой метод решения — геометрический. Косинус, зависящий от wt, можно представить в виде горизонтальной проекции некоторого вращающегося вектора. Пусть имеется вектор А1, вращающийся с течением времени; длина его равна a1, a угол с осью абсцисс равен wt+j1. (Мы пока опустим слагаемое wt; как мы увидим, при выводе это не играет роли.) Сделаем моментальный снимок векторов в момент времени t=0, помня, что на самом деле вся схема вращается с угловой скоростью w (фиг. 29.9). Проекция a1 на ось абсцисс в точности равна a1cos (wt+j1). В момент времени t=0 вторая волна представляется вектором А2, длина которого равна a2, а его угол с осью абсцисс равен j2, причем он тоже вращается с течением времени.

Фиг. 29.9. Геометрический способ сложения двух косинусоидальных волн.

Чертеж вращается со скоростью w против часовой стрелки.

Оба вектора вращаются с одинаковой угловой скоростью w, и их относительное расположение неизменно. Вся система вращается жестко, подобно твердому телу.

Горизонтальная проекция А2 равна A2cos(wt + j2). Из векторного анализа известно, что при сложении двух векторов по правилу параллелограмма образуется новый, результирующий вектор АR, причем

x-компонента его есть сумма х-компонент слагающих векторов. Отсюда получаем решение нашей задачи. Легко проверить, что получается правильный ответ в нашем частном случае a12=А. Действительно, из фиг. 29.9 очевидно, что ARлежит посредине между a1 и А2 и составляет угол 1/2 (j2-j1) с каждым из них. Следовательно, AR = 2Аcos1/2 (j2-j1), что совпадает с прежним результатом. Кроме того, в случае А1-А2фаза AR есть среднее от фаз a1 и А2. Для неравных A1и А2задача решается столь же просто. Мы можем назвать это геометрическим решением задачи.

Существует еще один метод решения задачи, его можно было бы назвать аналитическим. Вместо того чтобы рисовать схему, подобную приведенной на фиг. 29.9, напишем выражения, имеющие тот же смысл, что и чертеж, и сопоставим каждому вектору комплексное число. Действительные части этих комплексных чисел отвечают реальным физическим величинам. В нашем конкретном случае волны записываются следующим образом: A1ехр[i(wt+j1)] [действительная часть этого равна A1cos(wt+j1)] и A2ехр[i(wt-+j2)]. Сложим обе волны:

(29.13)

(29.14)

Задача, таким образом, решена, так как мы имеем окончательный результат в виде комплексного числа с модулем ARи фазой jR.

Для иллюстрации аналитического метода найдем амплитуду АR , т. е. «длину» R. «Длина» комплексного числа в квадрате есть само комплексное число, умноженное на сопряженное ему.