Читать «Излучение. Волны. Кванты» онлайн - страница 38

Ричард Фейнман

Глава 30

ДИФРАКЦИЯ

§ 1. Результирующее поле n одинаковых осцилляторов

§ 2. Дифракционная решетка

§ 3. Разрешающая способность дифракционной решетки

§ 4. Параболическая антенна

§ 5. Окрашенные пленки; кристаллы

§ 6. Дифракция на непрозрачном экране

§ 7. Поле системы осцилляторов, расположенных на плоскости

§ 1. Результирующее поле n одинаковых осцилляторов

Настоящая глава — непосредственное продолжение предыдущей, хотя название «Интерференция» здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворительным образом определить разницу между дифракцией и интерференцией. Дело здесь только в привычке, а существенного физического различия между этими явлениями нет. Единственное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обычно называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — интерференция это или дифракция, а просто продолжим наше обсуждение с того места, где мы остановились в предыдущей главе.

Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных расстояниях один от другого и обладающих равными амплитудами, но разными фазами создаваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возникает разность хода лучей. Независимо от причины возникновения разности фаз необходимо вычислить сумму такого вида:

где j — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае j=a+2pd1/2sinq. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А,а его фаза равна нулю; длина второго также А, а фаза его равна j. Следующее слагаемое имеет снова длину А и фазу, равную 2j, и т. д. В конце концов получается часть правильного многоугольника с nсторонами (фиг. 30.1).

Фиг. 30.1. Результирующая амплитуда шести аквидистантных источников при разности фаз j между каждыми двумя соседними источниками.

Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе j (поскольку радиус QS образует с А2 такой же угол, как QO с a1). Следовательно, радиус rдолжен удовлетворять равенству А = 2rsinj/2, откуда мы и находим величину r. Далее, большой угол OQT равен nj; следовательно, AR=2rsinnj/2. Исключая из обоих равенств г, получаем

(30.2)

Таким образом, суммарная интенсивность оказывается равной

(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n =1, получим, как и следовало ожидать, I = I0. Проверим формулу для n=2: с помощью соотношения sinj=2sin j/2cosj/2 сразу находим АR = 2Acosj/2, что совпадает с (29.12).