Читать «Излучение. Волны. Кванты» онлайн - страница 35

Ричард Фейнман

Фиг. 29.8. Устройство из шести дипольных антенн и часть распределения интенсивности его излучения.

Причина появления максимума, казалось бы, по-прежнему существует, поскольку D может равняться длине волны, и осцилляторы 1 и 6, находясь в фазе, взаимно усиливают свои сигналы. Но осцилляторы 3 и 4 оказываются не в фазе с осцилляторами 1 и 6, отличаясь от них по фазе приблизительно на половину длины волны, и вызывают обратный эффект по сравнению с этими осцилляторами. Поэтому интенсивность в данном направлении оказывается малой, хотя и не равной точно нулю. В результате возникает мощный луч в нужном направлении и ряд небольших побочных максимумов. Но в нашем частном примере есть одна добавочная неприятность: поскольку расстояние между соседними диполями равно 2 l, можно найти угол, для которого разность хода s лучей от соседних диполей в точности равна длине волны. Сигналы от соседних осцилляторов будут отличаться на 360°, т. е. снова окажутся в фазе, и в этом направлении мы получим еще один мощный пучок радиоволн! На практике этого эффекта легко избежать, если выбрать расстояние между осцилляторами меньше одной длины волны. Само же возникновение добавочных максимумов при расстоянии между осцилляторами более одной длины волны очень интересно и важно, но не для передачи радиоволн, а для дифракционных решеток.

§ 5. Математическое описание интерференции

Мы рассматривали излучение диполей с качественной точки зрения, теперь рассмотрим количественную картину. Найдем прежде всего суммарное поле от двух источников в самом общем случае, когда разность фаз а и силы осцилляторов a1 и А2 произвольны; для этого необходимо сложить два косинуса с одинаковой частотой, но разными фазами. Разность фаз находится весьма просто: она складывается из разности, возникающей за счет неодинакового удаления точки наблюдения от обоих источников, и внутренней, заданной разности фаз колебаний. Выражаясь математически, нам необходимо сложить две волны: R=a[cos(wt+j1)+А2cos (wt+j2). Как это сделать?

Каждый, вероятно, сумеет провести это сложение, но тем не менее проследим за ходом вычислений. Прежде всего, если мы разбираемся в математике и достаточно ловко управляемся с синусами и косинусами, эту задачу легко решить. Самый простой случай, когда амплитуда a1 равна А2 , и пусть обе они обозначаются через А. В этих условиях (назовем это тригонометрическим методом решения задачи) мы имеем

(29.9)

На уроках тригонометрии вы, вероятно, доказывали равенство