Читать «Электричество и магнетизм» онлайн - страница 42
Ричард Фейнман
Теперь уже легко разглядеть, что и поток из объема, окруженного произвольной поверхностью S, обязан быть равным нулю. Ведь любой объем можно представить себе составленным из таких частей, как на фиг. 4.6. Вся поверхность разделится на пары торцевых участков, а поскольку потоки через каждую из них внутрь и наружу объема попарно уничтожаются, то и суммарный поток через поверхность обратится в нуль. Идея эта иллюстрируется фиг. 4.7. Мы получаем совершенно общий результат: суммарный поток Е через любую поверхность S в поле точечного заряда равен нулю.
Фиг. 4.7. Всякий объем можно представлять себе состоящим из бесконечно малых усеченных конусов.
Поток E сквозь один конец каждого конического сегмента равен и противоположен потоку сквозь другой конец. Общий поток из поверхности S поэтому равен пулю.
Фиг. 4.8. Если заряд находится внутри поверхности, поток наружу не равен нулю.
Будьте, однако, внимательны! Наше доказательство работает только тогда, когда поверхность S не окружает заряд. А что случилось бы, если бы точечный заряд оказался внутри поверхности? Как и раньше, поверхность можно было бы разделить на пары площадок, связанные радиальными прямыми, проходящими через заряд (фиг. 4.8). Потоки через эти участки по той же причине, что и раньте, по-прежнему попарно равны, но только теперь их знаки одинаковы. Поток из поверхности, окружающей заряд, не равен нулю. Тогда чему же он равен? Это можно определить с помощью фокуса. Допустим, что мы «убрали» заряд «изнутри», окружив его маленькой поверхностью S' так, чтобы она лежала целиком внутри первоначальной поверхности 5 (фиг. 4.9). Теперь в объеме, заключенном между двумя поверхностями S и S', никакого заряда нет. Общий поток из этого объема (включая поток через S') равен нулю, в чем можно убедиться при помощи прежних аргументов. Они говорят нам, что поток через S' внутрь объема такой же, как поток через S наружу.
Для S' мы можем выбрать любую, какую угодно форму, поэтому давайте сделаем ее сферой с зарядом в центре (фиг. 4.10). Тогда поток через нее подсчитать легко. Если радиус малой сферы равен r, то значение Е повсюду на ее поверхности равно
и направлено всегда по нормали к поверхности. Весь поток
Фиг. 4.9. Поток через S равен потоку через S'.
Фиг. 4.10. Поток через сферическую поверхность, охватывающую точечный заряд q, равен qle0.
через S' получится, если эту нормальную составляющую Е умножить на площадь поверхности:
Поток через поверхность
т. е. равен числу, не зависящему от радиуса сферы! Значит, и поток наружу через S тоже равен q/e0; это значение не зависит от формы S до тех пор, пока заряд q находится внутри. Наши выводы мы можем записать так: