Читать «Электричество и магнетизм» онлайн - страница 44
Ричард Фейнман
§ 7. Поле заряженного шара
Одной из самых трудных задач, которую пришлось нам решать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как если бы все вещество шара было сконцентрировано в его центре. Много лет Ньютон не решался обнародовать свою теорию тяготения, так как не был уверен в правильности этой теоремы. Мы доказали ее в вып. 1, гл. 13, взяв интеграл для потенциала и вычислив силу тяготения по градиенту. Теперь эту теорему мы можем доказать очень просто. Но на этот раз мы докажем не совсем ее, а сходную теорему для однородно заряженного электричеством шара. (Поскольку законы электростатики и тяготения совпадают, то то же доказательство может быть проведено и для поля тяготения.)
Зададим вопрос: каково электрическое поле Е в точке
Ф
Закон Гаусса утверждает, что этот поток равен суммарному заряду сферы
или
(4.39)
а это как раз та формула, которая получилась бы для точечного заряда Q
§ 8. Линии поля; эквипотенциальные поверхности
Теперь мы собираемся дать геометрическое описание электростатического поля. Два закона электростатики: один — о пропорциональности потока и внутреннего заряда и другой — о том, что электрическое поле есть градиент потенциала, могут также быть изображены геометрически. Мы проиллюстрируем это двумя примерами.
Первый пример: возьмем поле точечного заряда. Проведем линии в направлении поля, которые повсюду касательны к векторам поля (фиг. 4.12). Их называют