Читать «Большая Советская Энциклопедия (ВЕ)» онлайн - страница 70

БСЭ БСЭ

  Векторное поле а (М ) называется соленоидальным, или трубчатым, если это поле представляет собой вихрь некоторого поля b (M ). Поле b (M ) называется векторным потенциалом поля a . Для того чтобы а было соленоидальным, необходимо и достаточно обращение в нуль дивергенции этого поля. В векторном анализе важную роль играют интегральные соотношения: Остроградского формула , именуемая также основной формулой векторного анализа, и Стокса формула . Пусть V — область, граница Г которой состоит из конечного числа кусков гладких поверхностей, n — единичный вектор внешней нормали к Г . Пусть в области V задано такое векторное поле а (М ), что div а представляет собой непрерывную функцию. Тогда справедливо соотношение

 

  называемое формулой Остроградского.

  Если a — поле скоростей установившегося потока несжимаемой жидкости, то (a , n ) ds — объём жидкости, протекающей в единицу времени через площадку ds на границе Г . Поэтому правая часть формулы (1) представляет собой поток жидкости через границу Г тела V в единицу времени. Так как в рассматриваемом случае div а характеризует интенсивность источников жидкости, то формула Остроградского выражает следующий наглядный факт: поток жидкости через замкнутую поверхность Г равен количеству жидкости, порождаемой всеми источниками, расположенными внутри Г. Пусть в области W задано непрерывное и дифференцируемое векторное поле а , имеющее непрерывный вихрь rot а . Пусть Г — ориентируемая поверхность, состоящая из конечного числа кусков гладких поверхностей, n единичный вектор нормали к Г , t — единичный вектор касательной к краю g поверхности Г , l — длина дуги g. Справедливо следующее соотношение

 

  называемое формулой Стокса. Формула (2) выражает следующий физический факт: поток вихря векторного поля а через поверхность Г равен циркуляции этого поля вдоль кривой g. Формула Остроградского служит источником инвариантного (независящего от выбора системы координат) определения основных операций векторного анализа. Например, из этой формулы вытекает, что

 

  Так как выражение

 

  представляет собой поток жидкости через Г , а

 

величину этого потока на единицу объёма, то определение div а с помощью соотношения (3) показывает, что div а характеризует интенсивность источника в данной точке.

  Лит.: Кочин Н. Е., Векторное исчисление и начала тензорного исчисления, 6 изд., Л.—М., 1938; Дубнов Я. С., Основы векторного исчисления, 4 изд., т. 1—2, М., 1950—52; Будак Б. М., Фомин С. В., Кратные интегралы и ряды, 2 изд., М., 1967.

  Э. Г. Позняк.

Рис. 6 к ст. Векторное исчисление.

Рис. 5 к ст. Векторное исчисление.

Рисунки 8, 9 к ст. Векторное исчисление.

Рисунки 1—4 к ст. Векторное исчисление.

Рис. 7 к ст. Векторное исчисление.

Векторное поле

Ве'кторное по'ле , область, в каждой точке Р которой задан вектор а (Р ). Математически В. п. может быть определено в данной области G посредством вектор-функции a (Р ) переменной точки Р этой области. К понятию В. п. приводит целый ряд физических явлений и процессов (например, векторы скоростей частиц движущейся жидкости в каждый момент времени образуют В. п.). Теория В. п. широко разработана и имеет разнообразные применения в различных областях естествознания (см. Векторное исчисление ).