Читать «Большая Советская Энциклопедия (ВЕ)» онлайн - страница 64

БСЭ БСЭ

  Н. Г. Вострокнутов.

Схема действия векторметра.

Векторная диаграмма

Ве'кторная диагра'мма, графическое изображение значений периодически изменяющихся величин и соотношений между ними при помощи направленных отрезков — векторов .

  В. д. широко применяются в электротехнике, акустике, оптике и т. п.

  Простые гармонические функции одного периода, например

  a1 = B1 sinwt, f2 = B2 sin(a + wt ),

  f3 = B3 sin(b + wt ),

  могут быть представлены графически (рис .) в виде проекции на ось Оу векторов

   вращающихся с постоянной угловой скоростью w , причём  и  повёрнуты относительно  на углы a и b . Длина векторов соответствует амплитудам колебаний:

 

  Сумма или разность двух и более колебаний на В. д. обозначается как геометрическая сумма или разность векторов составляющих колебаний, полученная по правилу параллелограмма, а мгновенное значение искомой величины определяется проекцией вектора суммы на ось Оу.

  Например, требуется найти сумму F колебаний f1 с амплитудой  и f2 амплитудой . При геометрическом сложении векторов  и  по В. д. находим, что амплитуда суммарного колебания F равна длине вектора  и опережает по фазе колебание f1 на угол j .

Рис. к ст. Векторная диаграмма.

Векторное исчисление

Ве'кторное исчисле'ние, математическая дисциплина, в которой изучают свойства операций над векторами евклидова пространства. При этом понятие вектора представляет собой математическую абстракцию величин, характеризующихся не только численным значением, но и направленностью (например, сила, ускорение, скорость).

  Возникновение и развитие В. и. Возникновение В. и. тесно связано с потребностями механики и физики. До 19 в. для задания векторов использовался лишь координатный способ, и операции над векторами сводились к операциям над их координатами. Лишь в середине 19 в. усилиями ряда учёных было создано В. и., в котором операции проводились непосредственно над векторами, без обращения к координатному способу задания. Основы В. и. были заложены исследованиями английского математика У. Гамильтона и немецкого математика Г. Грасмана по гиперкомплексным числам (1844—50). Их идеи были использованы английским физиком Дж. К. Максвеллом в его работах по электричеству и магнетизму. Современный вид В. и. придал американский физик Дж. Гиббс. Значительный вклад в развитие В. и. внесли русские учёные. В первую очередь следует отметить работы М. В. Остроградского. Им была доказана основная теорема векторного анализа (см. Остроградского формула ). Исследования казанского математика А. П. Котельникова по развитию винтового исчисления имели важное значение для механики и геометрии. Эти исследования были продолжены советскими математиками Д. Н. Зейлигером и П. А. Широковым. Большое влияние на развитие В. и. имела книга «Векторный анализ», написанная в 1907 русским математиком П. О. Сомовым.