Читать «6. Электродинамика» онлайн - страница 89
Ричард Фейнман
Теперь из B=СXA можно получить магнитное поле. Поскольку р’ направлен по оси z, у А есть только z-компонента; в роторе остаются только две ненулевые производные. Значит, Вх=дАг/ду и В=—дАz/дх. Поглядим сперва на Вх:
(21.19)
Чтобы продифференцировать, вспомним, что r=Ц(x:2+y2+z2), так что
Но мы помним, что дr/ду=y/r; значит, первое слагаемое даст
(21.21)
что убывает как 1/r2, т. е. как поле статического диполя (потому что в данном направлении у/r постоянно).
Второе слагаемое в (21.20) приводит к новому эффекту. Если провести в нем дифференцирование, то получится
(21.22)
где р” — просто вторая производная р по t. Вот это-то получающееся от дифференцирования числителя слагаемое и ответственно за излучение. Во-первых, оно описывает поле, убывающее на расстоянии как i/r, во-вторых, зависит от ускорения заряда. Теперь вам должно быть ясно, как мы собираемся получить формулу типа (21.1'), описывающую световое излучение.
Явление это настолько интересно и важно, что стоит немного подробнее разобраться в том, откуда берется это «радиационное» слагаемое. Мы начинали с выражения (21.18), зависящего от rкак 1/r и тем самым похожего на кулонов потенциал (если не обращать внимания на запаздывающий множитель в числителе). Почему же когда мы, желая получить поле, дифференцируем по пространственным координатам, то не получаем просто поля вида 1/r2 (конечно, с соответствующей временной задержкой)?
А вот почему. Представьте, что диполь приведен в колебательное движение вверх и вниз. Тогда
Если начертить график зависимости Аrот rв каждый данный момент, то получится кривая, показанная на фиг. 21.3. Амплитуда в пиках убывает как 1/r, но, кроме того, еще имеются пространственные колебания, которые ограничены огибающей вида 1/r. Пространственные производные в формуле пропорциональны наклону кривой. Из фиг. 21.3 видно, что встречаются намного более крутые наклоны, чем наклон самой кривой 1/г. Очевидно, что при данной частоте наклоны в пиках пропорциональны амплитуде волны, меняющейся как 1/r. Тем самым объясняется степень спадания радиационного слагаемого с расстоянием.
Все это получается оттого, что временные вариации в источнике превращаются в пространственные вариации, когда волны начинают разбегаться в стороны, магнитные же поля зависят от пространственных производных потенциала.
Фиг. 21.3. Зависимость величины А от r в момент t для сферической волны от колеблющегося диполя.
Теперь возвратимся назад и закончим наши расчеты магнитного поля. Для Вхмы получили (21.21) и (21.22). Поэтому
(21.1')
С помощью точно таких же выкладок мы придем к
И все это можно объединить в одну красивую векторную формулу:
(21.23)
А теперь взгляните на нее. Прежде всего на больших удалениях (когда rвелико) следует принимать в расчет только р. Направление В дается вектором pXr, перпендикулярным и к радиусу r, и к ускорению (фиг. 21.4). Все сходится с тем, что получилось бы из формулы (21.1').
Теперь посмотрите (к этому мы не привыкли) на то, что происходит поблизости от заряда. В гл. 14, § 7 (вып. 5) мы вывели закон Био и Савара для магнитного поля элемента тока. Мы нашли, что элемент тока jdV привносит в магнитное поле следующий вклад: