Читать «6. Электродинамика» онлайн - страница 87
Ричард Фейнман
где r
(21.14)
Иначе говоря, поле в точке
Теперь мы видим, как получать общее решение уравнений Максвелла. Если подразумевать под шскалярный потенциал j, то функция источника s превращается в r/e0. А можно считать, что ш представляет одну из трех компонент векторного потенциала А; тогда s означает соответствующую компоненту j/e0c2. Стало быть, если во всех точках известна плотность нарядов r
(21.15)
(21.16)
Поля Е и В получатся дифференцированием потенциалов [используются выражения (21.2) и (21.3)]. Кстати, можно проверить явно, что j и А, полученные из (21.15) и (21.16), действительно удовлетворяют равенству (21.6).
Мы решили уравнения Максвелла. В любых обстоятельствах, если только заданы токи и заряды, из этих интегралов можно определить потенциалы, а затем, продифференцировав их, получить поля. Тем самым с теорией Максвелла покончено. И это позволяет нам также замкнуть круг и вернуться к нашей теории света, потому что достаточно только подсчитать электрическое поле движущегося заряда, чтобы связать все это с нашей прежней теорией света. Все, что нам остается сделать,— это взять движущийся заряд, вычислить из этих интегралов его потенциал и затем из -Сj-
Итак, мы дошли до центра электромагнитной вселенной. У нас в руках полная теория электричества, магнетизма и света, полное описание полей, создаваемых движущимися зарядами, и многое, многое другое. Все сооружение, воздвигнутое Максвеллом, во всей его полноте, красе и мощи сейчас перед нами. Это, пожалуй, одно из величайших свершений физики. И чтобы напомнить о его важности, мы переписываем все формулы вместе и обводим их красивой рамкой.
§ 4. Поля колеблющегося диполя
Мы пока еще не провели обещанного вывода формулы (21.1) для электрического поля движущегося точечного заряда. Даже зная то, что мы уже знаем, этот вывод все равно проделать нелегко. Нам не удалось обнаружить формулы (21.1) нигде, ни в каких книжках и статьях (кроме первых выпусков этих лекций). Это свидетельствует о том, что вывод ее не прост. (Поля движущегося заряда записывались неоднократно и в других видах, которые все, конечно, эквивалентны.) Мы ограничимся поэтому здесь тем, что просто покажем на нескольких примерах, что (21.15) и (21.16) приводят к тем же результатам, что и (21.1). Первым делом мы покажем, что при том единственном условии, что движение заряженной частицы является нерелятивистским, (21.1) приводит к правильной величине полей. (Уже этот частный случай покрывает 90% всего того, что было сказано о явлении света.)