Читать «6. Электродинамика» онлайн - страница 73

Ричард Фейнман

(20.15)

(20.16)

Поскольку временные производные как x-компоненты магнитного поля, так и

y-компоненты магнитного поля равны нулю, то обе эти компоненты суть попросту постоянные поля и отвечают найденным раньше магнитостатическим решениям. Ведь кто-то мог оставить постоянный магнит возле того места, где распространяются волны. Мы будем игнорировать эти постоянные поля и положим Вхи Вyравными нулю.

Кстати, о равенстве нулю x-компонент поля В мы должны были бы заключить и по другой причине. Поскольку дивергенция В равна нулю (по третьему уравнению Максвелла), то мы, прибегая при рассмотрении электрического поля к тем же доводам, что и выше, должны были бы прийти к выводу, что продольная компонента магнитного поля не может изменяться вдоль х. А раз мы такими однородными полями в наших волновых решениях пренебрегаем, то нам следовало бы положить Вхравным нулю. В плоских электромагнитных волнах поле В, равно как и поле Е, должно быть направлено поперек направления распространения самих волн.

Равенство (20.16) дает нам добавочное утверждение о том, что если электрическое поле имеет только y-компоненту, то магнитное поле имеет только z-компоненту. Значит, Е и В перпендикулярны друг другу. Именно это и наблюдалось в той волне особого типа, которую мы уже рассмотрели.

Теперь мы готовы использовать последнее из уравнений Максвелла для пустого пространства [т. е. IV из (20.12)1. Расписывая покомпонентно, имеем

(20.17)

Из шести производных от компонент В только dBz/dx не равна нулю. Так что три уравнения просто дают

(20.18)

Итог всей нашей деятельности состоит в том, что отличны от нуля только по одной компоненте электрического и магнитного полей и эти компоненты обязаны удовлетворять уравнениям (20.16) и (20.18). Эти два уравнения можно объединить в одно, если первое из них продифференцировать по х, а второе— по t; тогда левые стороны уравнений совпадут (с точностью до множителя с2). И мы обнаруживаем, что Е подчиняется уравнению

(20.19)

Мы уже встречали это дифференциальное уравнение, когда изучали распространение звука. Это волновое уравнение для одномерных волн.

Заметьте, что в процессе вывода мы получили больше, чем содержится в (20.11). Уравнения Максвелла дали нам информацию и о том, что у электромагнитных волн есть только компоненты поля, расположенные под прямым углом к направлению распространения волн.

Вспомним все, что нам известно о решениях одномерного волнового уравнения. Если какая-то величина ш удовлетворяет одномерному волновому уравнению

(20.20)

то одним из возможных решений является функция ш (x, t),

имеющая вид

(20.21)

т. е. функция одной-единственной переменной (x-ct). Функция i(x-ct) представляет собой «жесткое» образование вдоль оси х, которое движется по направлению к положительным х со скоростью с (фиг. 20.4). Так, если максимум функции f приходится на нулевое значение аргумента, то при t=0 максимум ш оказывается при x=0. В более поздний момент, скажем при t=10, максимум ш окажется в точке х=10 с. Когда время движется, максимум тоже движется в сторону возрастания х со скоростью с. Порой удобнее считать, что решение одномерного волнового уравнения является функцией от (t-х/с). Однако в сущности это одно и то же, потому что любая функция от (t-х/с)— это