Читать «Большая Советская Энциклопедия (РИ)» онлайн - страница 107
БСЭ БСЭ
,
геометрический смысл которого иллюстрируется следующим образом. Рассмотрим в двумерном римановом пространстве метрической связности малый треугольник, образованный отрезками геодезических длины а, b, с и углами А, В, С. Тогда главная часть проекции кручения в точке А на сторону AB равна отношению величины с — acosB — bcosA к площади треугольника, а главная часть проекции кручения на перпендикуляр к AB — величине asinB — bsinA, деленной на площадь треугольника. Т. о., в римановом пространстве нулевого кручения имеют место теоремы косинусов и синусов обыкновенной тригонометрии с точностью до величин, малых в сравнении с площадью треугольника.
Кривые, касательный вектор к которым переносится вдоль них параллельно, называются геодезическими соответствующей связности; они совпадают с римановыми геодезическими, если тензор
кососимметричен по всем индексам.
Подпространства. На m-мерном подмногообразии М риманова пространства R, задаваемом уравнениями xi = xi (u1,..., um), причём ранг матрицы равен m, имеет место Р. г., определяемая метрическим тензором
М называется римановым подпространством пространства R.
Достаточно малая область m-мерного риманова пространства R может быть погружена в евклидово пространство достаточно большой размерности N (т. е. допускает сохраняющее длины отображение на подмногообразие этого пространства). Известно, что ; вопрос о минимальном значении N в общем случае ещё не решен, однако если коэффициенты метрической формы gij пространства R являются аналитическими функциями (т. е. разлагаются в сходящиеся степенные ряды), то . Относительно задачи погружения в целом (представляющей интерес для физики калибровочных полей) известно ещё меньше.
Наиболее подробно исследованы погружения двумерных римановых пространств. Так, например: 1) двумерное полное риманово пространство положительной кривизны К. погружается в виде замкнутой выпуклой поверхности (овалоида) в трёхмерное риманово пространство кривизны не меньшей К [проблема Г. Вейля (1916), решенная немецким математиком Х. Леви (1937) и А. Д. Александровым (1941) для погружения в евклидово пространство и А. В. Погореловым (1957) для риманова пространства], причём любые два погружения, имеющие общую точку и общее соприкасающееся пространство в ней, совпадают [т. е. овалоид однозначно определён своей метрикой, немецкий математик С. Э. Кон-Фоссен (1927), А. В. Погорелов (1948)]. 2) Двумерное полное риманово пространство отрицательной кривизны K £ Ko < 0 не допускает погружения в виде регулярной поверхности [советский математик Н. В. Ефимов (1963), частный случай плоскости Лобачевского (К = —1) разобран Д. Гильбертом (1901)]. 3) Двумерное риманово пространство, гомеоморфное тору, допускает погружение в четырёхмерное евклидово пространство [советский математик Э. Г. Позняк (1973)].
Приложения и обобщения римановой геометрии. 1) Поскольку Р. г. определяется заданием дважды ковариантного симметричного тензора, постольку всякую физическую задачу, сводящуюся к изучению такого тензорного поля, можно формулировать как задачу Р. г. В частности, к тензорным полям такого типа относятся различные физические величины, характеризующие упругие, оптические, термодинамические, диэлектрические, пьезомагнитные и другие свойства анизотропных тел. При этом симметрия коэффициентов gij является отражением одного из фундаментальных физических законов — закона взаимности. Так, задача о теплопроводности анизотропного тела, решенная ещё Риманом (1861), явилась первым приложением Р. г.