Читать «Квантовая механика II» онлайн - страница 132
Ричард Фейнман
Существует ли такой ток? Вы знаете, что плотность вероятности P(r,
И вот, я спрашиваю: существует ли такой ток J, что
Если я продифференцирую (19.7) по времени, то получу два слагаемых
Теперь для
Члены с потенциальной энергией и многие другие члены взаимно уничтожатся. А то, что останется, оказывается, действительно можно записать в виде полной дивергенции. Все уравнение целиком эквивалентно уравнению
Не так уж сложно, как кажется на первый взгляд. Это симметричная комбинация из y*, умноженного на некоторую операцию над y, плюс y, умноженное на комплексно сопряженную операцию над y*. Это просто некоторая величина плюс комплексно сопряженная ей величина, так что все вместе (как и положено быть) вещественно. Операция запоминается так: это попросту оператор импульса
Тогда это и есть тот ток J, который удовлетворяет уравнению (19.8).
Уравнение (19.8) показывает, что вероятность сохраняется локально. Если частица исчезает из одной области, то она не может оказаться в другой без того, чтобы что-то не протекло в промежутке между областями. Вообразите, что первая область окружена замкнутой поверхностью, которая проведена так далеко, что имеется нулевая вероятность обнаружить на ней электрон. Полная вероятность обнаружить электрон где-то внутри поверхности равна объемному интегралу от
§ 3. Два рода импульсов
Уравнение для тока довольно интересно, хотя порой причиняет немало забот. Ток можно было бы считать чем-то вроде произведения плотности частиц на скорость. Плотность выглядела бы как yy*, так что здесь все в порядке. Каждый член в (19.12) напоминает типичное выражение для среднего значения оператора