Читать «Квантовая механика II» онлайн - страница 120
Ричард Фейнман
Те же рассуждения подойдут к измерениям каких угодно величин. Среднее значение измеряемой величины
где
Вернемся теперь к нашему квантовомеханическому состоянию |y>. Его средняя энергия равна
А теперь следите внимательно! Сначала перепишем эту сумму так:
Теперь будем рассматривать левое <y| как общий множитель.
Вынесем его за знак суммы и напишем
Это выражение имеет вид <y|j>, где |j> — некоторое «придуманное» состояние, определяемое равенством
Иными словами, это то состояние, которое у вас получится, если вы возьмете каждое базисное состояние |h
Но вспомним теперь, что такое |h
А раз
Теперь приходится просуммировать по
Чудесно, уравнение (18.16) совпало с
Средняя энергия состояния |y> записывается, стало быть, в очень привлекательном виде
Чтобы получить среднюю энергию, подействуйте на |y> оператором
где амплитуды <
что вполне естественно.
Уравнение (18.19) можно, кстати, обобщить и на другие физические измерения, которые вы в состоянии выразить в виде оператора. Например, пусть
Один из способов доказательства этой формулы — придумать такую задачу, в которой энергия пропорциональна моменту количества движения. Тогда все рассуждения просто повторятся. Подытоживая, скажем, что если физически наблюдаемая величина
Под этим подразумевается
где
§ 3. Средняя энергия атома
Пусть мы хотим узнать среднюю энергию атома в состоянии, описываемом волновой функцией y(r); как же ее найти? Рассмотрим сперва одномерную задачу, когда состояние |y> определяется амплитудой <