Читать «Квантовая механика II» онлайн - страница 119
Ричард Фейнман
Иначе говоря, чтобы получить i, j-и элемент матрицы А+, вы обращаетесь к j, i-му элементу матрицы А (индексы переставлены) и комплексно его сопрягаете. Амплитуда того, что состояние А^+|j> находится в состоянии |y>, комплексно сопряжена амплитуде того, что А^|y> находится в |j>. Оператор А^+ называется «эрмитово сопряженным» оператору А^. Многие важные операторы квантовой механики имеют специальное свойство: если вы их эрмитово сопрягаете, вы опять возвращаетесь к тому же оператору. Если В как раз такой оператор, то В^+=В^;его называют «самосопряженным», или «эрмитовым», оператором.
§ 2. Средние энергии
До сих пор мы в основном напоминали вам о том, что вы уже знаете. А теперь перейдем к новому. Как бы вы подсчитали среднюю энергию системы, скажем, атома? Если атом находится в определенном состоянии с определенной энергией и вы эту энергию измеряете, то вы получите определенную энергию Е. Если вы начнете повторять измерения с каждым из множества атомов, которые отобраны так, чтобы быть всем в одинаковом состоянии, то все измерения дадут вам Е, и «среднее» изо всех ваших измерений тоже, конечно, окажется Е.
Но что случится, если вы проделаете свои измерения над состоянием |y>, которое не является стационарным? Раз у системы нет определенной энергии, то одно измерение даст одну энергию, то же измерение над другим атомом в том же состоянии даст другую и т. д. Каким же окажется среднее всей серии измерений энергии?
На этот вопрос мы ответим, если возьмем проекцию состояния |y> на систему состояний с определенной энергией. Чтобы помнить, что это особый базис, будем обозначать эти состояния |hi>. Каждое из состояний |hi> обладает определенной энергией Ei, В этом представлении
Когда вы проделываете измерение энергии и получаете некоторое число Еi, вы тем самым обнаруживаете, что система была в состоянии |hi>. Но в каждом новом измерении вы можете получить новое число. Иногда вы получите E1, иногда Е2, иногда Е3и т. д. Вероятность, что вы обнаружите энергию E1? равна попросту вероятности обнаружить систему в состоянии |h1>, т. е. квадрату модуля амплитуды С1=<h1|y>. Вероятность обнаружить то или иное возможное значение энергии Eiесть
Pi=|Ci|2. (18.11)
Как же связать эти вероятности со средним значением всей последовательности измерений энергий? Вообразим, что мы получили ряд результатов измерений, например E1, Е7, E11, Е9, E1, E10, Е7, E2, Е3, Е9, Е6, E4и т. д., всего тысяча измерений. Сложим все энергии и разделим на 1000. Это и есть среднее. Можно сложение проделать и покороче. Посчитайте, сколько раз у вас вышло E1(скажем, оно вышло N1раз), сколько раз вышло Е2(скажем, N2раз) и т. д. Ясно, что сумма всех энергий равна
Средняя энергия равна этой сумме, деленной на полное число измерений, т. е. на сумму всех Ni, которую мы обозначим N:
Мы почти у цели. Под вероятностью какого-нибудь события мы понимаем как раз число случаев, когда ожидается наступление этого события, деленное на общее число испытаний. Отношение Ni/N должно (при больших N) мало отличаться от Pi— вероятности обнаружить состояние |hi>, хоть и не будет точно совпадать с Рiиз-за статистических флуктуации. Обозначим предсказываемую (или «ожидаемую») среднюю энергию <E>ср; тогда мы вправе сказать