Читать «Большая Советская Энциклопедия (РЯ)» онлайн - страница 8

БСЭ БСЭ

     (7)

сходится тогда и только тогда, когда сходится интеграл

.

С помощью этого признака легко устанавливается, что Р.

     (8)

сходится при a > 1 и расходится при a Ј 1.

  Признак сравнения: если для двух Р. (1) и (6) с неотрицательными членами существует такая постоянная с> 0, что 0 Ј u n Ј cu n ,то из сходимости Р. (6) следует сходимость Р. (1), а из расходимости Р. (1) — расходимость Р. (6). Обычно для сравнения берётся Р. (8), а в заданном Р. выделяется главная часть вида А/n a .Таким методом сразу получается, что Р. с n-м членом

,

где

сходится, поскольку сходится Р.

.

  Как следствие признака сравнения получается следующее правило: если

то при a > 1 и 0 Ј k< + Ґ Р. сходится, а при a Ј 1 и 0 < kЈ + Ґ Р. расходится. Так, например, Р. с n-м членом u n = sin (1/ n 2) сходится, ибо

 (a = 2)

a Р. с u n= tg (p/ n) расходится, здесь

  (a = 1)

  Часто оказываются полезными два следствия признака сравнения. Признак Д'Аламбера: если существует  ( u n> 0), то при l< 1 P. (1) сходится, а при l> 1 — расходится; и признак Коши: если существует    ( u n&sup3; 0), то при l< 1 P. (1) сходится, а при l> 1 P. расходится. При I= 1 как в случае признака Д'Аламбера, так и в случае признака Коши существуют и сходящиеся и расходящиеся Р.

  Важный класс Р. составляют абсолютно сходящиеся ряды: Р. (1) называется абсолютно сходящимся, если сходится Р.

.

  Если Р. абсолютно сходится, то он и просто сходится. Р.

абсолютно сходится, а Р.

сходится, но не абсолютно. Сумма абсолютно сходящихся Р. и произведение абсолютно сходящегося Р. на число являются также абсолютно сходящимися Р. На абсолютно сходящиеся Р. наиболее полно переносятся свойства конечных сумм. Пусть

     (9)

— P., составленный из тех же членов, что и Р. (1), но взятых, вообще говоря, в другом порядке. Если Р. (1) сходится абсолютно, то Р. (9) также сходится и имеет ту же сумму, что и Р. (1). Если Р. (1) и Р. (6) абсолютно сходятся, то Р., полученный из всевозможных попарных произведений u mu n членов этих Р., расположенных в произвольном порядке, также абсолютно сходится, причём если сумма этого Р. равна s, а суммы Р. (1) и (6) равны соответственно s 1и s 2, то s= s 1s 2,т. е. абсолютно сходящиеся Р. можно почленно перемножать, не заботясь о порядке членов. Признаки сходимости для Р. с неотрицательными членами применимы для установления абсолютной сходимости рядов.

  Для Р., не абсолютно сходящихся (такие Р. называют также условно сходящимися), утверждение о независимости их суммы от порядка слагаемых неверно. Справедлива теорема Римана: посредством надлежащего изменения порядка членов данного не абсолютно сходящегося Р. можно получить Р., имеющий наперёд заданную сумму, или расходящийся Р. Примером условно сходящегося Р. может служить Р.

.

Если в этом Р. переставить члены так, чтобы за двумя положительными следовал один отрицательный:

,

то его сумма увеличится в 1,5 раза. Существуют признаки сходимости, применимые к не абсолютно сходящимся Р. Например, признак Лейбница: если