Читать «Геометрия, динамика, вселенная» онлайн - страница 5
Иосиф Леонидович Розенталь
Геометрия (как указывает ее название) родилась из практических задач — измерения площадей земельных участков. Например, простейший вопрос об отношении площадей круга и квадрата нельзя решить без помощи геометрии (в рамках элементарной математики). Именно задачи о сравнении площадей земельных участков очень часто приходилось решать древним геометрам.
Отметим, что актуальность решения подобных задач сохраняется и поныне. Можно с уверенностью сказать, что читатель сталкивается с вопросом о длинах, площадях и объемах различных предметов. Основные понятия геометрии Евклида прочно вошли в нашу жизнь. Образы точки (например, в письме), плоскости (стены комнат) и объемов)дома, в которых мы живем) — наша повседневная действительность.
Евклид (точнее, его геометрия) в достаточно общем виде решил одну из важнейших практических проблем: количественного сравнения реальных объектов с разными формами. Созданная им геометрия была облечена в столь безукоризненную изящную форму, что актуальная для современности проблема «практического внедрения» была решена без задержек.
Несомненно, что «живучести» геометрии Евклида и ее быстрому «внедрению» способствовала ее адекватность кинематике абсолютно твердых тел. Неизменность их формы при перемещениях оптимально описывается в рамках евклидовой геометрии.
Подчеркнем далее, что вместе с геометрией Евклида в математику пришла абстракция. Для геометрии (по крайней мере в ее привычной формулировке) безразлично, сравниваются ли, например, объемы однородных предметов (двух комнат) или различных (например, гаража и автомашины). Геометрия как часть математики отвлекается от сущности объекта исследования. И в этой особенности имеются как сильные, так и слабые стороны.
Сила традиционной геометрии — в ее общности, универсальности. Слабость — в абстрагировании, создающем предпосылки для размытия основополагающих понятий геометрии, размытия, затрудняющего их сопоставление с реальными объектами, явлениями или процессами. До определенного времени этому обстоятельству не придавали серьезного значения, однако, когда наступила пора подвергнуть геометрию критическому переосмысливанию, высветилась эта слабая сторона геометрии. Возникла парадоксальная ситуация: самая точная и, по-видимому, самая наглядная наука — геометрия базируется на понятиях, не поддающихся точным определениям. Чтобы оправдать такое сильное утверждение, полезно напомнить некоторые «школьные» истины.
Учитель, начиная обучение геометрии, произносит слова: «Точка — объект, лишенный протяженности, линия — объект, характеризуемый длиной, но лишенный ширины» — и затем иллюстрирует эти определения, отмечая мелом на доске точку и проводя линию. Однако, размеры такой точки ~ 1 мм, ширина линии также ~ 1 мм — символ точечности? Это утверждение в значительной степени базируется на авторитете учителя.
Если постараться, можно, используя тонкое перо, свести размеры «точки» или «ширины» линии до ~0.1 мм, но и эта величина не соответствует геометрическому определению точки или линии.
Опираясь на весьма тонкие оптические методы, можно уменьшить размеры точки до 10**-10 см. Данные о рассеянии некоторых элементарных частиц свидетельствуют, что их размеры ~<10**-16 см. Однако и в этом случае не исчезает «проклятый» вопрос: можно ли объекты, характеризуемые столь малыми величинами, полагать «точками»?