Читать «Геометрия, динамика, вселенная» онлайн - страница 4

Иосиф Леонидович Розенталь

Непрофессионалу, возможно, трудно представить себе, насколько физики (как, вероятно, и представители других наук) подвержены моде.

Так, 1980 — 1982 гг. прошли под лозунгом: «Даешь распад протона». Строились огромные установки, вкладывались большие средства, а эта «проклятая» частица все еще не хочет распадаться. Автор далек здесь от иронии: обнаружение распада протона стало бы эпохой в физике, но увы…

В 1983 г. были модны многомерные теории Калуца-Клейна.

В 1984 — 1985 гг. стали популярны «супертеории», основанные на таких понятиях, как «супергравитация», «суперсимметрия», «суперпространство», «суперструны» и т. д.

Как подтверждение суперсимметрии оптимисты трактуют буквально с неба снизошедшее излучение двойной звезды Syg-X3. Пессимисты же более осторожны в своих выводах.

При создании книги мы воспользовались рекомендацией А.К.Толстого: «О том, что очень близко, мы лучше умолчим». Чтобы оценить все эти «супертеории», нужна некоторая временн`ая перспектива, да и сделать их изложение простым достаточно сложно. Поэтому автор сосредоточил свое внимание на многомерных теориях, благо прошло уже достаточно времени (несколько лет) с тех пор, как они оказались в центре внимания. Впрочем, чтобы не прослыть суперретроградом, автор не мог порой удержаться от использования терминов с приставкой «супер».

Трактовать современные представления о пространстве, не упоминая классические их образы — пространства Минковского и Римана, равносильно постройке большого здания на песке. Казалось необходимым кратко напомнить их свойства. Это, возможно, придало книге некоторую архаичность.

Как видно из предисловия, поводов для замечаний предостаточно. Автор будет благодарен читателям за деловое обсуждение затронутых им вопросов.

ГЛАВА 1. Г Е О М Е Т Р И Я

1. ЭМПИРИЧЕСКАЯ ГЕОМЕТРИЯ

Основы эмпирической геометрии, как науки о непосредственно наблюдаемом пространстве были заложены в глубокой древности: в Египте, Вавилоне и Греции. Итоги многовековых размышлений о количественных соотношениях между видимыми, непосредственно наблюдаемыми объектами были подведены в III в. до н. э. Евклидом. В течение почти 2.5 тысячелетий евклидова геометрия является одним из столпов школьной математики. практически в неизменной форме она дошла до нашего времени. Случай этот уникален. почти забыта физика Аристотеля, о математическом анализе Архимеда вспоминают лишь историки математики. Школьная же геометрия базируется на геометрии Евклида. Разница в основном лишь в методике изложения.

В чем причины поразительной живучести евклидовой геометрии? На наш взгляд, ответ на этот вопрос многозначен. Во-первых, она хорошо отображает простейшие количественные отношения форм реальных объектов, во-вторых, евклидову геометрию характеризует поражающая логичность и методическая завершенность, наконец, евклидова геометрия является превосходной основой для воспитания логического мышления на общедоступных примерах, имеющих широкие практические приложения.

Поучительно подробнее разобрать приведенные аргументы.