Читать «Начертательная геометрия: конспект лекций» онлайн - страница 14
Ирина Сергеевна Козлова
Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.
2. Прямая, параллельная плоскости
Может быть несколько положений прямой относительно некоторой плоскости.
1. Прямая лежит в некоторой плоскости.
2. Прямая параллельна некоторой плоскости.
3. Прямая пересекает данную плоскость.
Рассмотрим признак параллельности прямой и плоскости. Прямая является параллельной плоскости, когда она параллельна любой прямой, лежащей в этой плоскости. На рисунке 53 прямая
Когда прямая параллельна плоскости
3. Прямая, пересекающая плоскость
Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).
Рассмотрим построение точки пересечения плоскостей.
Через некоторую прямую I необходимо провести вспомогательную плоскость
В данном построении основным моментом решения является проведение вспомогательной плоскости
4. Прямая, перпендикулярная плоскости
Прямая и плоскость перпендикулярны, если на плоскости можно найти две пересекающиеся прямые, перпендикулярные исходной прямой. В качестве подобной пары контрольных прямых легче всего рассматривать следы плоскости
Итак, признак перпендикулярности можно задать, используя прямую и плоскость на эпюре.
Прямая является перпендикулярной плоскости, когда проекции прямой перпендикулярны одноименным следам плоскости.