Читать «Большая Советская Энциклопедия (ОП)» онлайн - страница 35

БСЭ БСЭ

  Описание всякой задачи О. и. включает задание компонент (факторов) решения (которые можно понимать как его непосредственные последствия; обычно, хотя и необязательно, компоненты решения являются численными переменными), налагаемых на них ограничений (отражающих ограниченность ресурсов) и системы целей. Всякая система компонент решения, удовлетворяющих всем ограничениям, называется допустимым решением. Каждой из целей соответствует целевая функция, заданная на множестве допустимых решений, значения которой выражают меру осуществления цели. Сущность задачи О. и. состоит в нахождении наиболее целесообразных, оптимальных решений. Поэтому задачи О. и. обычно называются оптимизационными.

  Некоторые наиболее важные и разработанные задачи О. и. получили название моделей О. и. Они обычно выделяются содержательной терминологией и имеют специфические методы решения. К их числу относятся , задача размещения, теория , близкая к ней теория замены оборудования, теория расписаний (называется также теорией календарного планирования), теория управления запасами и теория . Одной из моделей О. и. считается , хотя ещё не все её задачи приобрели оптимизационный характер.

  Среди задач О. и. выделяются те, в которых имеется одна целевая функция, принимающая численные значения. Теория таких задач называется (или оптимальным программированием). Им противостоят задачи с несколькими целевыми функциями или с одной целевой функцией, но принимающей векторные значения или значения ещё более сложной природы. Эти задачи называются многокритериальными. Они решаются путём сведения (часто условного) к задачам с единственной целевой функцией либо на основе использования .

  Принятие решений происходит на основе информации, поступающей к принимающему решение субъекту. Поэтому задачи О. и. естественно классифицировать по их теоретико-информационным свойствам. Если субъект в ходе принятия решения сохраняет своё информационное состояние, т. е. никакой информации не приобретает и не утрачивает, то принятие решения можно рассматривать как мгновенный акт. Соответствующие задачи О. и. называется статическими. Напротив, если субъект в ходе принятия решения изменяет своё информационное состояние, получая или теряя информацию, то в такой динамической задаче обычно целесообразно принимать решение поэтапно («многошаговые решения») или даже развёртывать принятие решения в непрерывный во времени процесс. Значительная часть теории динамических задач О. и входит в .