Читать «Большая Советская Энциклопедия (ОП)» онлайн - страница 33

БСЭ БСЭ

  Простейшие виды О., действующих на волновую функцию y(х ) (где х — координата частицы), — О. умножения (например, О. координаты , y = х y) и о. дифференцирования (например, О. импульса , y = , где i — мнимая единица,  — постоянная Планка). Если y — вектор, компоненты которого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу — .

  В квантовой механике в основном используются . Это означает, что они обладают следующим свойством: если y1 = y'1 и y2 = y'2 , то (c 1 y1 + c 2 y2 ) = c 1 y'1 + c 2 y'2 , где c 1 и с 2 — комплексные числа. Это свойство отражает один из основных принципов квантовой механики.

  Существенные свойства О.  определяются уравнением yn = ln yn , где ln — число. Решения этого уравнения yn называется собственными функциями (собственными векторами) оператора . Собственные волновые функции (собственные векторы состояния) описывают в квантовой механике такие состояния, в которых данная физическая величина L имеет определённое значение ln . Числа ln называется собственными значениями О. , а их совокупность — спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее y n , имеет решение при любом значении ln (в определённой области), во втором — решения существуют только при определённых дискретных значениях ln . Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Например, О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил — непрерывный, дискретный или смешанный спектр. Дискретные собственные значения О. энергии называются энергетическими уровнями.

  Собственные функции и собственные значения О. физических величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ. значения, то соответствующие квантовомеханич. О. должны иметь веществ. собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии y должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) yn О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т.н. самосопряжённых О., или .

  С О. можно производить алгебраич. действия. В частности, под произведением О. 1 и 2 понимается такой О.   = 12 , действие которого на вектор (функцию) y даёт y = y’’, если 2 y = y’ и 1 y’ = y’’. Произведение О. в общем случае зависит от порядка сомножителей, т. е . 12 ¹ 21 . Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физических величин, которым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физических величин является равенство 12 = 21 (см. ).