Читать «Большая Советская Энциклопедия (БЕ)» онлайн - страница 528

БСЭ БСЭ

  2) Совсем в другой логической обстановке Б. появляется в математике в виде «несобственных» бесконечно удалённых геометрических образов (см. ). Здесь, например, бесконечно удалённая точка на прямой а рассматривается как особый постоянный объект, «присоединённый» к обычным конечным точкам. Однако неразрывная связь бесконечного с конечным обнаруживается и здесь, хотя бы при проектировании из центра, лежащего вне прямой, при котором бесконечно удалённой точке оказывается соответствующей прямая, проходящая через центр проектирования и параллельная основной прямой а.

  Аналогичный характер имеет пополнение системы действительных чисел двумя «несобственными» числами +¥ и -¥, соответствующее многим запросам анализа и теории функций действительного переменного. Можно подойти с такой же точки зрения и к пополнению ряда натуральных чисел 1, 2, 3,..., w, w + 1,..., 2w, 2w + 1,.... В связи с различием между переменными бесконечно малыми и бесконечно большими величинами, с одной стороны, и «несобственными» бесконечно большими числами, рассматриваемыми как постоянные, — с другой, возникли термины «потенциальная» Б. (для первых) и «актуальная» Б. (для вторых). В этом первоначальном понимании (о другом, современном понимании, см. ниже) спор между сторонниками актуальной и потенциальной Б. можно считать законченным. Бесконечно малые и бесконечно большие, лежащие в основе определения производной (как отношения бесконечно малых) и интеграла (как суммы бесконечно большого числа бесконечно малых) и примыкающих сюда концепций математического анализа, должны восприниматься как «потенциальные». Наряду с этим в надлежащей логической обстановке в математику вполне закономерно входят и «актуальные» бесконечно большие «несобственные» числа (и даже во многих различных аспектах: как количественные и порядковые трансфинитные числа в теории множеств, как несобственные элементы + ¥ и -¥ системы действительных чисел и т.д.).

  В математике приходится иметь дело с двумя способами присоединения к числовой системе бесконечных «несобственных» элементов.

  а) С проективной точки зрения на прямой находится одна «бесконечно удалённая точка». В обычной метрической системе координат этой точке естественно приписать абсциссу ¥. Такое же присоединение к числовой системе одной Б. без знака употребляется в теории функций комплексного переменного. В элементарном анализе при изучении рациональных функций

где Р (х ) и Q (x ) — многочлены, в тех точках, где Q (x ) имеет нуль более высокого порядка, чем Р (х ), естественно положить f (x ) = ¥. Для несобственного элемента ¥ устанавливаются такие правила действий: