Читать «Большая Советская Энциклопедия (БЕ)» онлайн - страница 503

БСЭ БСЭ

  Б. у. имеет большое значение в и технической гидродинамике: оно используется при расчётах трубопроводов, насосов, при решении вопросов, связанных с фильтрацией, и т.д. Бернулли уравнение для среды с переменной плотностью р вместе с уравнением неизменяемости массы и уравнением состояния является основой .

  Лит.: Фабрикант Н.Я., Аэродинамика, ч. 1—2, Л.,1949— 64; Угинчус А. А., Гидравлика, гидравлические машины и основы сельскохозяйственного водоснабжения, К.—М., 1957, гл. V.

Рис. 1. Истечение из открытого сосуда.

Рис. 2. Обтекание препятствия.

Бернулли уравнение (дифференциальное)

Берну'лли уравне'ние, дифференциальное уравнение 1-го порядка вида:

  dy/dx + Py = Qy a ,

  где Р, Q — заданные непрерывные функции от x ; a постоянное число. Введением новой функции z = y-- a +1 Б. у. сводится к относительно z. Б. у. было рассмотрено Я. Бернулли в 1695, метод решения опубликован И. Бернулли в 1697.

Бернулли числа

Берну'лли чи'сла, специальная последовательность рациональных чисел, фигурирующая в различных вопросах математического анализа и теории чисел. Значения первых шести Б. ч.:

  B1 = 1 /6 , B2 = 1 /30 , B3 = 1 /42 , B4 = 1 /30 ,

  B5 = 5 /66 , B6 = 691 /2730 .

  В математическом анализе Б. ч. появляются как коэффициенты разложения некоторых элементарных функций в степенные ряды. Например:

 

  К числу важнейших формул, в которых встречаются Б. ч., относится формула суммирования Эйлера — Маклорена (см. ). Через Б. ч. выражаются суммы многих рядов и значения несобственных интегралов. Б. ч. впервые появились в посмертной работе Я. Бернулли (1713) в связи с вычислением суммы одинаковых степеней натуральных чисел. Он доказал, что

 

  Для Б. ч. известны рекуррентные формулы, позволяющие последовательно вычислять эти числа, а также явные формулы (имеющие довольно сложный вид).

  Большой интерес представляют теоретико-числовые свойства Б. ч. Немецкий математик Э. Куммер в 1850 установил, что уравнение Ферма xp + ур = zp не решается в целых числах х, у, z, отличных от нуля, если простое число р > 2 не делит числителей Б. ч. B1 , B2 ,...B (p - 3)/2. Нередко для обозначения Б. ч. вместо Bm пишут (-1) m - 1 B2m (m = 1, 2...); кроме того, полагают

  B0 = 1, B1 = - 1 /2 ,