Читать «Большая Советская Энциклопедия (БЕ)» онлайн - страница 502
БСЭ БСЭ
Ю. В. Прохоров.
Бернулли теорема
Берну'лли теоре'ма, одна из важнейших теорем теории вероятностей; является простейшим случаем т. н. закона больших чисел (см. ). Б. т. была впервые опубликована в труде Я. Бернулли «Искусство предположений», изданном в 1713. Первые доказательства Б. т. требовали сложных математических средств, лишь в середине 19 в. П. Л. нашёл необычайно изящное и краткое её доказательство. Точная формулировка Б. т. такова: если при каждом из n независимых испытаний вероятность некоторого события равна р, то вероятность того, что частота m/n появления события удовлетворяет неравенству |m/n - p| < e (e — произвольно малое положительное число), становится сколь угодно близкой к единице при достаточно большом числе n испытаний. Из доказательства Чебышева вытекает простая количественная оценка этой вероятности:
В. И. Битюцков.
Бернулли уравнение (гидродинамики)
Берну'лли уравне'ние, основное уравнение , связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в 1738 для струйки идеальной несжимаемой жидкости постоянной плотности r, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:
v2 / 2 + pl r + gh = const,
где g — ускорение силы тяжести. Если это уравнение умножить на r, то 1-й член будет представлять собой кинетическую энергию единицы объёма жидкости, а др. 2 члена — его потенциальную энергию, часть которой обусловлена силой тяжести (последний член уравнения), а др. часть — давлением p. Б. у. в такой форме выражает закон сохранения энергии. Если вдоль струйки жидкости энергия одного вида, например кинетическая, увеличивается, то потенциальная энергия на столько же уменьшается. Поэтому, например, при сужении потока, текущего по трубопроводу, когда скорость потока увеличивается (т.к. через меньшее сечение за то же время проходит такое же количество жидкости, как и через большее сечение), давление соответственно в нём уменьшается (на этом основан принцип работы расходомера Вентури).
Из Б. у. вытекает ряд важных следствий. Например, при истечении жидкости из открытого сосуда под действием силы тяжести (рис. 1 ) из Б. у. следует:
v2 /2g = h или
т. е. скорость жидкости в выходном отверстии такова же, как при свободном падении частиц жидкости с высоты h.
Если равномерный поток жидкости, скорость которого v0 и давление p0 , встречает на своём пути препятствие (рис. 2 ), то непосредственно перед препятствием происходит подпор — замедление потока; в центре области подпора, в критической точке, скорость потока равна нулю. Из Б. у. следует, что давление в критической точке p 1 = p 0 + rv 2 0 /2. Приращение давления в этой точке, равное p 1 - p 0 = rv 2 0 /2, называется динамическим давлением, или скоростным напором. В струйке реальной жидкости её механическая энергия не сохраняется вдоль потока, а расходуется на работу сил трения и рассеивается в виде тепловой энергии, поэтому при применении Б. у. к реальной жидкости необходимо учитывать потери на сопротивление.