Читать «Система Диофанта» онлайн - страница 2
W Cat
= Не забавно, а показательно.
— Возможно. Так я наслаждался победой целый день, а на следующий — до меня дошло!!!
= Что дошло, к чему восклицания?
— Просмотри, выше изложенное, ничего не замечаешь?
= Пока ничего.
— Хорошо, изложу доступнее:
система:
x + y = S
xy = M
тождественна:
x2 — Sx + M = 0
= Ну, и что. Согласен, я тебе верю.
— В математике, верить нельзя. Надо проверять доказательства.
= Ладно, доказал, но к чему ты ведешь?
— Посмотри же! Любое приведенное квадратное уравнение легким движением можно превратить в систему, а точнее коэффициент S является суммой корней (с минусом), и коэффициент M их произведением.
Отсюда следует, что 90% «школьных» приведенных КУ можно легко решить в уме.
КУ
Попробуем?
= Давай.
— Напомню последовательность действий:
1. разложение коэффициента M на простые сомножители
Простых чисел до 100 не так уж много:
2 | 3 | 5 | 7 | 11 | 13 | 17 |
19 | 23 | 29 | 31 | 37 | 41 | 43 |
47 | 53 | 59 | 61 | 67 | 71 | 73 |
79 | 83 | 89 | 97 | | | |
2. выбор полученных корней в сумме дающих S
= Все понятно, поехали.
— Для x2 — 7x + 10 = 0 корни будут 2 и 5.
= Да, я вижу, (x2 — [2+5]x + [2 • 5] = 0) проверим:
2 • 2 — 7 • 2 + 10 = 4 — 14 + 10 = 0
5 • 5 — 7 • 5 + 10 = 25 — 35 + 10 = 0
Все сошлось, я тоже хочу попробовать.
— Пробуй: x2 — 16x + 39 = 0
= Корни 3 и 13. Ну, надо же! Я Вижу!!! Еще хочу!
x2 — 3x + 2 = 0
корни 1 и 2.
= Попался! Это все знают! 1 не является простым числом.
— Ну и что, хоть горшком назови, ну пусть 1 будет «сверх простым числом», но корнем этого уравнения оно является.
= Тогда я предлагаю такое уравнение x2 — 4x = 0 и корни будут 0 и 4.
— Согласен. А реши такое x2 + 18x + 65 = 0
= Решение 5 и 13.
— Неверно.
= Погоди, проверю 13 • 5 = 65; 13 + 5 = 18 ты не прав. Все верно.
— А ты подставь корни в квадратное уравнение.
= Да, не получается, а в чем дело.
— Ты забыл смотреть на знаки. Ответ будет -5 и -13
= Ну, надо же. А я думал, что все проще некуда.
— Давай разберемся со знаками. Вот базовая формула: x2 — Sx + M = 0. При коэффициенте M плюс будет если
= Чего-то ты перемудрил.
— Ну смотри. Если при M стоит минус. Значит насторожись, один из корней отрицателен.
Если + Sx + M, то к гадалке не ходи, оба корня отрицательны. Ну лучше опробуем все это на практике.
x2 — [5+2]x + [5•2] = x2 — 7x + 10 = 0
x2 — [-2+5]x + [-2•5] = x2 — 3x — 10 = 0
x2 — [-5+2]x + [-5•2] = x2 + 3x — 10 = 0
x2 — [-5 + -2]x + [-5•-2] = x2 + 7x + 10 = 0
= В общем понятно, - потренироваться надо.
— Приступай.
x2 — 8x + 12 = 0;
x2 — 2x — 3 = 0;
x2 — 5x + 4 = 0;
x2 — 13x + 12 = 0;
x2 — 7x + 12 = 0;
x2 — 15x + 26 = 0;
x2 + 14x + 45 = 0;
x2 + 3x - 70 = 0;
x2 — 12x + 35 = 0;
— А дальше тренируйся дома «на кошках». Открой учебник и пиши ответы.
— Давай разберем еще два случая.
x2 — 10x + 100 = 0
= Чего-то не понял.
— Уравнение решения не имеет. 100 = 2•2•5•5 при любой комбинации сомножителей сумма будет больше 10.
= Занятно.
x2 — 6x + 9 = 0
— Уравнение имеет единственное решение 3.
— А если так, x2 — 5x + 9 = 0 то решений нет.