Читать «Отличная квантовая механика» онлайн - страница 5
Александр Львовский
Глава 2 целиком посвящена запутанности, ее следствиям и приложениям. Сначала я ввожу пространство тензорных произведений математически, затем рассказываю о частичных квантовых измерениях, удаленном приготовлении состояния и парадоксе нелокальности (в формах Белла и Гринбергера — Хорна — Цайлингера), иллюстрируя теорию экспериментами с запутанными фотонами. Нелокальность, пожалуй, главный парадокс квантовой механики, и после него естественно обсудить механизм квантовых измерений, их естественный аналог (декогеренцию) и интерпретации квантовой механики. В разд. 2.4 мы выясняем, когда и почему квантовая система становится классической в ходе измерения и почему мы не встречаем гуляющих по городу кошек Шрёдингера. После этого я весьма подробно рассматриваю приложения запутанности, такие как квантовые вычисления, телепортация и повторители. При преподавании этого материала имеет смысл предложить двум или трем студентам сделать презентации по свежим исследованиям в данной области.
Главы 3 и 4 представляют собой в некоторой степени реверанс в сторону «общепринятой» вузовской квантовой механики частицы в потенциальном поле. Там нам придется иметь дело с гильбертовым пространством, базисом которого является континуум, поэтому глава 3 сопровождается кратким курсом по дельта-функциям Дирака и преобразованию Фурье (приложение Г). Я надеюсь, что после того, как студенты уже усвоят базовые положения КМ, они смогут воспринимать технические особенности гильбертовых пространств с непрерывными переменными, не теряя из виду физические принципы. Вводя системы с непрерывными переменными я объясню, как и почему при этом изменяются правила нормирования. Затем я приведу обычные примеры потенциальных ям, потенциальных барьеров, туннелирования и гармонического осциллятора. На этом, как мне представляется, должна завершиться программа первого семестра курса.
Далее в главе 3 объясняется представление Гейзенберга и то, как оно согласуется с представлением Шрёдингера; все это иллюстрируется многочисленными примерами, связанными с физикой гармонического осциллятора (и продемонстрированными в квантово-оптических экспериментах): смещением, фазовым сдвигом, а также одно- и двумодовым сжатием. С помощью последнего я показываю первоначальный вариант парадокса Эйнштейна — Подольского — Розена.
В главе 4 я рассматриваю трехмерное геометрическое пространство (как тензорное произведение трех одномерных пространств) и рассказываю про момент импульса, спин и, наконец, атом водорода. Затем обсуждается поведение спина в магнитном поле и магнитный резонанс, а также дается понятие о спиновом эхе и спектроскопии Рамзея.
В главе 5 мы вновь обращаемся к фундаментальным принципам квантовой механики, представив их на этот раз на языке операторов плотности, который имеет важнейшее значение во всех приложениях квантовой физики. Чтобы продемонстрировать полезность этого языка, я даю с его помощью строгое описание декогеренции и релаксации при ядерном магнитном резонансе. Затем я затрагиваю важные для современной квантовой информатики темы: обобщенные измерения, а также томографию квантового состояния, процесса и детектора.