Читать «Дилемма заключенного и доминантные стратегии. Теория игр» онлайн - страница 2
Хорди Деулофеу
Давно ведутся споры о том, развивается математика сама по себе и решает лишь собственные задачи или ее развитие стимулируют вопросы, поставленные в других областях. Чтобы развеять сомнения, обратимся к истории математики. В Древнем Египте и Вавилонии математика носила исключительно прикладной и практический характер, что подтверждают дошедшие до нас источники. В Древней Греции, где сформировалась суть этой науки — необходимость доказывать правильность полученных результатов, — математика по большей части была теоретической. В ней шла речь об абстрактных понятиях, таких как число или форма, которые, однако, часто находили неожиданное применение в повседневной жизни или в других науках.
Можно сказать, что математика развивается благодаря тому, что ученые пытаются решить задачи или ответить на вопросы о нашем мире в самом широком смысле этого слова. Но так как математика является продуктом деятельности человека, все эти вопросы обусловлены культурой, в которой развивается математика, и именно эта культура определяет, какие вопросы представляют в данный момент наибольший интерес.
Математика занимательная и серьезная, чистая и прикладная
Джон фон Нейман, один из главных героев этой книги, в своей лекции «Роль математики в науке и обществе» (The Role of Mathematics in Science and Society) подтвердил, что множество важнейших математических идей появились без каких-либо мыслей об их предполагаемой полезности, но по прошествии времени математические теории, модели и методы стали использоваться при решении задач в самых разных областях человеческих знаний. В то же время многие математические идеи зародились в реальном мире, в котором мы живем, потому что математика, пусть и далекая от реальности, тем не менее в разных формах присутствует в ней.
Фон Нейман никоим образом не принадлежит к тем математикам, которые не ценят прикладное значение этой научной дисциплины (недаром он является одним из создателей теории игр, в значительной степени носящей прикладной характер). Ученый подтверждает, что очень часто ученые добивались успеха, когда не искали что-то полезное целенаправленно и руководствовались лишь соображениями красоты с точки зрения математики. Фактически в финале своей лекции фон Нейман подчеркивает, что прогресс в математике был бы значительно меньше, если бы все исследования велись исключительно с учетом их возможной полезности для человечества. Напротив, своеобразный принцип невмешательства позволил добиться поистине удивительных результатов.
Проводя параллель с полезностью математики, можно упомянуть и ее развлекательный характер. Может ли такая абстрактная наука одновременно быть столь интересной? И снова история математики подсказывает нам ответ. В этой главе вы увидите, как игры и занимательная математика шли бок о бок практически во все времена и множество раз давали начало новым теориям: например теории вероятностей, теории графов и, разумеется, теории игр.